Assignment \# 9.1a Key

1. Use quantification of an algorithmic predicate to estimate the complexity (decidable, re, co-re, non-re) of each of the following, (a)-(d):
ID $=\{\mathrm{f} \mid \forall \mathrm{xf}(\mathrm{x})=\mathrm{x}\}$
$\forall \mathbf{x} \exists \mathrm{t}[\operatorname{STP}(\mathbf{f}, \mathbf{x}, \mathrm{t}) \&(\operatorname{VALUE}(\mathbf{f}, \mathbf{x}, \mathbf{t})=\mathbf{x})]$
Non-RE, Non-Co-RE

Assignment \# 9.1b Key

b.) $\operatorname{STUTTER}=\{\mathrm{f} \mid$ for some $\mathrm{x}, \mathrm{f}(\mathrm{x}+1)=\mathrm{f}(\mathrm{x})\}$
$\exists<x, t>[\operatorname{STP}(f, x, t) \& \operatorname{STP}(f, x+1, t) \&$
(VALUE $(f, x, t)=(\operatorname{VALUE}(f, x+1, t))]$
RE

Assignment \# 9.1c Key

FIB1 $=\{f \mid$ for some $x>1 f(x+2)=f(x+1)+f(x)\}$
$\exists<x, t>[x>1 \& \operatorname{STP}(f, x, t) \& \operatorname{STP}(f, x+1, t) \operatorname{STP}(f, x+2, t) \&$
(VALUE(f,x+2,t) = VALUE(f,x+1,t) + VALUE(f,x,t))] RE

Assignment \# 9.1d Key

d) FIB2 $=\{f \mid$ there is some $x \geq 0$, such that for all $y \geq x[f(y+2)=f(y+1)+f(y)]\}$
$\exists x \forall y \exists t[y \geq x \& S T P(f, y, t) \& S T P(f, y+1, t) \operatorname{STP}(f, y+2, t) \&$
(VALUE(f,y+2,t) = VALUE(f,y+1,t) + VALUE(f,y,t))]
Non-RE, Non-Co-RE

Assignment \# 9.2 Key

2. Let sets A be recursive (decidable) and B be re nonrecursive (undecidable).
Consider $C=\{z \mid z=\max (x, y), x \in A, y \in B\}$. For (a)-(c), either show sets A and B with the specified property or demonstrate that this property cannot hold.
a) Can C be recursive?

YES. Consider A = \aleph. B = Halt.
$C=\{x \mid x \geq$ the smallest value in $B\}$. As B is non-empty it has some smallest value, s, so C is well-defined and
$\chi_{c}(x)=x \geq s$

Assignment \# 9.2b Key

b) Can C be non-recursive?

YES. Consider $A=\{0\}$. $B=$ Halt. $C=$ Halt. This is semidecidable but non rec as Halt is equivalent to C.

Assignment \# 9.2c Key

c) Can C be non-re?

No. Can enumerate C as follows.
First if A is empty then C is empty and so RE by definition. If A is non-empty then A is enumerated by some algorithm f_{A} as recursive sets are RE.
As B is non-recursive RE, then it is non-empty and enumerated by some algorithm f_{B}.
Define f_{c} by $f_{c}(<x, y>)=\max \left(f_{A}(x), f_{B}(y)\right) . f_{c}$ is clearly an algorithm as it is the composition of algorithms. The range of f_{c} is then $\{z \mid \max (x, y)$, where $x \in A$ and $y \in B\}=C$ and so C must be RE.

