Assignment 2 Key

Question 1)

Prove, if p and q are distinct prime numbers, then $V(p / q)$ is irrational.

Answer

Proof by contradiction :
Assume $\sqrt{\frac{p}{q}}$ is a rational number. Let $\frac{a}{b}$ be the reduced fraction (no common prime factors) that equals $\sqrt{\frac{p}{q}}$.

- $\sqrt{\frac{p}{q}}=\frac{a}{b} \Rightarrow \frac{p}{q}=\frac{a^{2}}{b^{2}} \Rightarrow a^{2} q=p b^{2}$
- Because p and q are distinct prime numbers, a should have p as its factor => a = (kp)
- $(k p)^{2} q=p b^{2} \Rightarrow k^{2} p q=b^{2}$ so b also needs to have p as its factor and it is a contradiction.

Question 2)

- Present a language L over Σ that has the following properties:
- $L \neq L^{2}$
- $L^{2}=L^{3}$
- Note: $L^{k}=\{x 1 \times 2 \ldots x k \mid x 1, x 2, \ldots, x k \in L\}$.

Answer

- $\Sigma=\{x\}$
- $\mathrm{L}=\Sigma^{*}-\{x x\}=\{\boldsymbol{\lambda}, x, x x x, x x x x, x x x x x, \ldots\}$
- $\mathrm{L}^{2}=\lambda\left(\Sigma^{*}-\{x x\}\right) \cup \mathrm{x}(\{\boldsymbol{\lambda}, x, x x x, x x x x, x x x x x, \ldots\}) \cup \ldots$
$=\mathrm{L} \cup \mathrm{xx} \cup \ldots$
$=\Sigma^{*}$
- $L^{3}=\Sigma^{*} \Sigma^{*}=\Sigma^{*}=L^{2}$

