Assignment 2 Key

Question 1)

Prove, if p and q are distinct prime numbers, then V(p/q) is irrational.

Answer

Proof by contradiction :
Assume
$$\sqrt{\frac{p}{q}}$$
 is a rational number. Let $\frac{a}{b}$ be the reduced fraction (no
common prime factors) that equals $\sqrt{\frac{p}{q}}$.
• $\sqrt{\frac{p}{q}} = \frac{a}{b} \Rightarrow \frac{p}{q} = \frac{a^2}{b^2} \Rightarrow a^2q = pb^2$

- Because p and q are distinct prime numbers, a should have p as its factor => a = (kp)
- $(kp)^2q = pb^2 \Rightarrow k^2pq = b^2$ so b also needs to have p as its factor and it is a contradiction.

Question 2)

- Present a language L over Σ that has the following properties:
- $L \neq L^2$
- L²= L³
- Note: $L^{k} = \{ x1x2...xk | x1,x2,...,xk \in L \}.$

Answer

- $\Sigma = \{x\}$
- $L = \Sigma^* \{xx\} = \{\lambda, x, xxx, xxxx, xxxxx, ...\}$
- $L^2 = \lambda(\Sigma^* \{xx\}) \cup x(\{\lambda, x, xxx, xxxx, xxxx, ...\}) \cup ...$ = $L \cup xx \cup ...$ = Σ^*
- $L^3 = \Sigma^* \Sigma^* = \Sigma^* = L^2$