Assignment \# 10.1 Key

1. Recast the decision problem for the Boolean expression
$\left(a+b+{ }^{\sim} c\right)(\sim a+b+b)(a+\sim b+c)$ as a SubsetSum problem using the construction discussed in class. Indicate what rows would need to be chosen for a solution.

	a	b	c	$a+b+\sim c$	$\sim a+b+b$	$a+\sim b+c$
a	1	0	0	1	0	1
$\sim a$	1	0	0	0	1	0
b	0	1	0	1	2	0
$\sim b$	0	1	0	0	0	1
c	0	0	1	0	0	1
$\sim c$	0	0	1	1	0	0
$C 1$	0	0	0	1	0	0
$C 1$,	0	0	0	1	0	0
$C 2$	0	0	0	0	1	0
$C 2$,	0	0	0	0	1	0
$C 3$	0	0	0	0	0	1
$C C^{\prime}$	0	0	0	0	0	1
	1	1	1	3	3	3

Assignment \# 10.2 Key

2. Recast the SubsetSum problem $\{15,7,12,4,11,6,4,12$, 3, 2\}, G=39 as a Partition Problem using the construction discussed in class. Indicate what values would need to be chosen to equal 39. Indicate the partitions that evenly divide the Partition Problem you posed
$\{15,7,12,4,11,6,4,12,3,2\} 15+7+12+3+2=39$
$\{15,7,12,4,11,6,4,12,3,2,113,115\}$
Can partition as $\{15,7,12,3,2,113\}=152$;
$\{4,11,6,4,12,115\}=152$

Assignment \# 10.3 Key

3. Recast the decision problem for the Boolean expression (a + b + ~ $\mathrm{c}+\mathrm{d})(\sim \mathrm{a}+\mathrm{b}+\sim \mathrm{d})(\mathrm{a}+\sim \mathrm{b}+\mathrm{c})$ as a 0,1-Integer Linear Programming problem using the construction discussed in class. Indicate what binary $(0,1)$ values of a, b, c and d give rise to a solution to the Integer Linear Programming problem you posed.
$0 \leq a \leq 1 ; 0 \leq b \leq 1 ; 0 \leq c \leq 1 ; 0 \leq d \leq 1$
$a+b+(1-c)+d \geq 1$
$(1-a)+b+(1-d) \geq 1$
$a+(1-b)+c \geq 1$
Solution: $a=1 ; b=1 ; c=1$; d either 0 or 1 - Lots of other solutions
