Assignment 1 Key

Question 2)

Prove or disprove the following:
For non-empty sets A and $B,(A-B)=A$ if and only if $A \cap B=\varnothing$.
A negative result must include sample sets A and B that contradict the assertion. A supporting result must prove both directions as it's an iff property.

Answer

- Part 1) Prove if $A \cap B=\varnothing$ then $(A-B)=A$
- Proof by contradiction :

Suppose $A \cap B=\varnothing$ but $(A-B) \neq A$. If $(A-B) \neq A$ then, since $A \supseteq(A-B)$, we must assume that $\exists x$ such that $x \in A$ and $x \in B$, but then $x \in A \cap B$ and $\mathrm{A} \cap \mathrm{B} \neq \varnothing$, a contradiction.

Answer

- Part 2) Prove if $(A-B)=A$ then $A \cap B=\varnothing$
- Direct Proof:

Assume $(A-B)=A$ then $A \cap \sim B=A \Rightarrow A \cap \sim B \cap B=A \cap B=>\varnothing=A \cap B$ since $\sim B \cap B=\varnothing$ and anything intersected with \varnothing is also \varnothing. This shows that $(A-B)=A$ implies $A \cap B=\varnothing$ as was desired.

