Assignment \# 9.1a Sample Key

1. Use quantification of an algorithmic predicate to estimate the complexity (decidable, re, co-re, non-re) of each of the following, (a)-(d):
a)REPEATS $=\{f \mid$ for some x and $y, x \neq y, f(x) \downarrow, f(y) \downarrow$ and $f(x)==f(y)\}$
$\exists<x, y, t>[\operatorname{STP}(f, x, t) \& \operatorname{STP}(f, y, t) \&(x \neq y) \&(\operatorname{VALUE}(f, x, t)=(\operatorname{VALUE}(f, y, t)$
)]
RE

Assignment \# 9.1b Key

b) DOUBLES $=\{\mathrm{f} \mid$ for all $\mathrm{x}, \mathrm{f}(\mathrm{x}) \downarrow, \mathrm{f}(\mathrm{x}+1) \downarrow$ and $\mathrm{f}(\mathrm{x}+1)=2 * \mathrm{f}(\mathrm{x})\}$
$\forall x \exists \mathrm{t}\left[\operatorname{STP}(\mathrm{f}, \mathrm{x}, \mathrm{t}) \& \operatorname{STP}(\mathrm{f}, \mathrm{x}+\mathbf{1}, \mathrm{t}) \&\left(\mathbf{2}^{*} \operatorname{VALUE}(\mathrm{f}, \mathrm{x}, \mathrm{t})=(\operatorname{VALUE}(\mathrm{f}, \mathrm{x}+1, \mathrm{t}))\right]\right.$
Non-RE, Non-Co-RE

Assignment \# 9.1c Key

c) DIVEVEN $=\left\{f \mid\right.$ for all $\left.x, f\left(2^{*} x\right) \uparrow\right\}$
$\forall<\mathbf{x , t}>$ [$\left.{ }^{\text {STP }}\left(\mathbf{f}, \mathbf{2}^{*} \mathbf{x}, \mathrm{t}\right)\right]$
Co-RE

Assignment \# 9.1d Key

d) QUICK10 $=\{\mathrm{f} \mid \mathrm{f}(\mathrm{x})$, for all $0 \leq x \leq 9$, converges in at most $\mathrm{x}+10$ steps $\}$
$\operatorname{STP}(f, 0,10) \& \operatorname{STP}(f, 1,11) \& . . . \& \operatorname{STP}(f, 9,19)$
or
$\forall \mathbf{x}_{0 \leq x \leq 9}[\operatorname{STP}(\mathbf{f}, \mathbf{x}, \mathbf{x}+\mathbf{1 0})]$

REC

Assignment \# 9.21 Key

1. Let sets A be recursive (decidable) and B be re non-recursive (undecidable).
Consider $C=\{z \mid \min (x, y)$, where $x \in A$ and $y \in B\}$. For (a)-(c), either show sets A and B with the specified property or demonstrate that this property cannot hold.
a) Can C be recursive?

YES. Consider $\mathrm{A}=\{0\}$. $\mathrm{B}=$ Halt. $\mathrm{C}=\{0\}$

Assignment \# 9.2b Key

b) Can C be non-recursive?

YES. Consider $A=\{2 x \mid x \in N\}$. $B=\{2 x+1 \mid x \in$ Halt $\}$. $C=A \cup B$. This is semi-decidable but non rec as Halt is reducible to \mathbf{C}.

Assignment \# 9.2c Key

c) Can C be non-re?

No. Can enumerate C as follows.
First if A is empty then C is empty and so RE by definition.
If A is non-empty then A is enumerated by some algorithm f_{A} as recursive sets are RE.
As B is non-recursive RE, then it is non-empty and enumerated by some algorithm f_{B}.
Define f_{c} by $f_{c}(<x, y>)=\min \left(f_{A}(x), f_{B}(y)\right) . f_{c}$ is clearly an algorithm as it is the composition of algorithms. The range of f_{c} is then $\{z \mid \min (x, y)$, where $x \in A$ and $y \in B\}=C$ and so C must be RE.

