Assignment \# 8.1 Sample Key

1. Use reduction from Halt to show that one cannot decide REPEATS, where REPEATS $=\left\{f \mid\right.$ for some x and $y, x \neq y, \varphi_{f}(x) \downarrow, \varphi_{f}(y) \downarrow$ and $\left.\varphi_{f}(x)==\varphi_{f}(y)\right\}$
Let f, x be an arbitrary pair of natural numbers. $\left\langle f, x>\right.$ is in Halt iff $\varphi_{f}(x) \downarrow$
Define g by $\varphi_{g}(y)=\varphi_{f}(x)-\varphi_{f}(x)$, for all y.
Clearly, $\varphi_{g}(y)=0$, for all y, iff $\varphi_{f}(x) \downarrow$, and $\varphi_{g}(y) \uparrow$, for all y, otherwise.
Summarizing, $<f, x>$ is in Halt implies g is in REPEATS and $\langle f, x\rangle$ is not in Halt implies g is not in REPEATS
Halt \leq_{m} REPEATS as we were to show.
Note: I have not overloaded the index of a function with the function in my proof, but I do not mind if you do such overloading.

Assignment \# 8.2 Sample Key

2. Show that REPEATS reduces to Halt. (1 plus $\mathbf{2}$ show they are equally hard)
Let f be an arbitrary natural number. f is in REPEATS iff for some x and $y, x \neq y, \varphi_{f}(x) \downarrow, \varphi_{f}(y) \downarrow$ and $\varphi_{f}(x)==\varphi_{f}(y)$
Define g by $\varphi_{g}(\mathrm{z})=\exists<\mathrm{x}, \mathrm{y}, \mathrm{t}>[\operatorname{STP}(\mathrm{f}, \mathrm{x}, \mathrm{t}) \& \operatorname{STP}(\mathrm{f}, \mathrm{y}, \mathrm{t}) \&(\mathrm{x} \neq \mathrm{y}) \&$ $(\operatorname{VALUE}(f, x, t)=(\operatorname{VALUE}(f, y, t))]$, for all z.
Clearly, $\varphi_{f}(z)=1$, for all z, iff there is some pair, x, y, such that $\varphi_{f}(x) \downarrow$ and $\varphi_{f}(y) \downarrow$ and $\varphi_{f}(x)=\varphi_{f}(y)$, and $\varphi_{g}(z) \uparrow$, for all z, otherwise.
Summarizing, f is in REPEATS iff $\langle g, 0>$ is in Halt and so
REPEATS \leq_{m} Halt as we were to show.

Assignment \# 8.3 Sample Key

3. Use Reduction from Total to show that DOUBLES is not even re, where
DOUBLES $=\left\{\mathrm{f} \mid\right.$ for all $\mathrm{x}, \varphi_{\mathrm{f}}(\mathrm{x}) \downarrow, \varphi_{\mathrm{f}}(\mathrm{x}+1) \downarrow$ and $\left.\varphi_{\mathrm{f}}(\mathrm{x}+1)=2 * \varphi_{\mathrm{f}}(\mathrm{x})\right\}$
Let f be an arbitrary natural number. f is in Total iff $\forall x \varphi_{f}(x) \downarrow$ Define g by $\varphi_{g}(x)=\varphi_{f}(x)-\varphi_{f}(x)$, for all x.
Clearly, $\varphi_{\mathrm{g}}(\mathrm{x})=0$ and so $\varphi_{\mathrm{g}}(\mathrm{x}+1)=2^{*} \varphi_{\mathrm{g}}(\mathrm{x})=0$ for all x , iff $\forall \mathrm{x} \varphi_{\mathrm{f}}(\mathrm{x}) \downarrow$; otherwise $\varphi_{g}(x) \uparrow$ for some x.
Summarizing, f is in Total iff g is in DOUBLES and so TOTAL \leq_{m} DOUBLES as we were to show.

Assignment \# 8.3 Alternate Key

3. Use Reduction from Total to show that DOUBLES is not even re, where
DOUBLES $=\left\{\mathrm{f} \mid\right.$ for all $\mathrm{x}, \varphi_{\mathrm{f}}(\mathrm{x}) \downarrow, \varphi_{\mathrm{f}}(\mathrm{x}+1) \downarrow$ and $\left.\varphi_{\mathrm{f}}(\mathrm{x}+1)=2 * \varphi_{\mathrm{f}}(\mathrm{x})\right\}$
Let f be an arbitrary natural number. f is in Total iff $\forall x \varphi_{f}(x) \downarrow$ Define g by $\varphi_{g}(x)=\varphi_{f}(x)-\varphi_{f}(x)+2^{\wedge} x$ for all x.
Clearly, $\varphi_{g}(x)=2^{\wedge} x$, and so $\varphi_{g}(x+1)=2^{*} \varphi_{g}(x)=2^{\wedge}(x+1)$ for all x, iff $\forall x$ $\varphi_{f}(x) \downarrow$; otherwise $\varphi_{g}(x) \uparrow$ for some x.
Summarizing, f is in Total iff g is in DOUBLES and so TOTAL \leq_{m} DOUBLES as we were to show.

Assignment \# 8.4 Sample Key

4. Show DOUBLES reduces to Total. (3 plus 4 show they are equally hard)
Let f be an arbitrary natural number. f is in DOUBLES iff $\forall x \varphi_{f}(x) \downarrow$, $\varphi_{f}(x+1) \downarrow$ and $\varphi_{f}(x+1)=2^{*} \varphi_{f}(x)$.
Define g by $\varphi_{\mathrm{g}}(\mathrm{x})=\mu \mathrm{y}\left[\varphi_{\mathrm{f}}(\mathrm{x}+1)=2^{*} \varphi_{\mathrm{f}}(\mathrm{x})\right]$, for all x .
Clearly, $\varphi_{\mathrm{g}}(\mathrm{x}) \downarrow$, for all x , iff $\forall \mathrm{x} \varphi_{\mathrm{f}}(\mathrm{x}) \downarrow, \varphi_{\mathrm{f}}(\mathrm{x}+1) \downarrow$ and $\varphi_{\mathrm{f}}(\mathrm{x}+1)=\mathbf{2}^{*} \varphi_{\mathrm{f}}(\mathrm{x})$; otherwise $\varphi_{\mathrm{g}}(\mathrm{x}) \uparrow$ for some x .
Summarizing, f is in DOUBLES iff g is in Total and so
DOUBLES \leq_{m} TOTAL as we were to show.

Assignment \# 8.5 Sample Key

5. Use Rice's Theorem to show that REPEATS is undecidable

First, REPEATS is non-trivial as $C O(x)=0$ is in REPEATS and $S(x)=x+1$ is not.
Second, REPEATS is an I/O property.
To see this, let f and g are two arbitrary indices such that
$\forall \mathbf{x}\left[\varphi_{\mathrm{f}}(\mathbf{x})=\varphi_{\mathrm{g}}(\mathbf{x})\right]$
$f \in$ REPEATS iff $\exists y, z, y \neq z$, such that $\varphi_{f}(y) \downarrow, \varphi_{f}(z) \downarrow$ and $\varphi_{f}(y)=\varphi_{f}(z)$ iff, since $\forall \mathbf{x}\left[\varphi_{f}(\mathbf{x})=\forall \mathbf{x} \varphi_{\mathrm{g}}(\mathbf{x})\right], \exists \mathbf{y}, \mathbf{z}, \mathbf{y} \neq \mathbf{z}$, (same \mathbf{y}, \mathbf{z} as above) such that $\varphi_{\mathrm{g}}(\mathrm{y}) \downarrow, \varphi_{\mathrm{g}}(\mathrm{z}) \downarrow$ and $\varphi_{\mathrm{g}}(\mathrm{y})=\varphi_{\mathrm{g}}(\mathrm{z})$ iff $\mathrm{g} \in$ REPEATS.
Thus, $\mathrm{f} \in$ REPEATS iff $\mathrm{g} \in$ REPEATS.

Assignment \# 8.6 Sample Key

6. Use Rice's Theorem to show that DOUBLES is undecidable First, DOUBLES is non-trivial as $\operatorname{CO}(\mathrm{x})=0(2 * 0=0)$ is in DOUBLES and $S(x)=x+1$ is not.
Second, DOUBLES is an I/O property.
To see this, let f and g are two arbitrary indices such that
$\forall \mathbf{x}\left[\varphi_{\mathrm{f}}(\mathbf{x})=\varphi_{\mathrm{g}}(\mathbf{x})\right]$.
$f \in$ DOUBLES iff for all $x, \varphi_{f}(x) \downarrow, \varphi_{f}(x+1) \downarrow$ and $\varphi_{f}(x+1)=2^{*} \varphi_{f}(x)$ iff, since $\forall \mathbf{x}\left[\varphi_{f}(x)=\varphi_{g}(x)\right]$, for all $x, \varphi_{g}(x) \downarrow, \varphi_{g}(x+1) \downarrow$ and $\varphi_{g}(x+1)=2^{*} \varphi_{g}(x)$ iff $g \in$ DOUBLES.
Thus, $\mathrm{f} \in$ DOUBLES iff $\mathrm{g} \in$ DOUBLES.
