Assignment # 7.1 Sample

For the following languages, either provide a grammar to show it is a CFL or employ the Pumping Lemma to show it is not

 a.) L = { aⁱ b^j | j > 2*I }

b.) L = { aⁿ b^{Fib(n)} | n>0 }, where Fib(i) is the ith Fibonacci number

Assignment # 7.2 Sample

2. Consider the context-free grammar **G** = ({ S } , { a , b } , S , P), where P is:

 $S \rightarrow SaSbS | SbSaS|SaSaS | a|\lambda$

Provide the first part of the proof that

L(G) = L = { w | w has at least as many a's as b's }

That is, show that $L(G) \subseteq L$

To attack this problem we can first introduce the notation that, for a syntactic form α , $\alpha_a =$ the number of **a's** in α , and $\alpha_b =$ the number of **b's** in α . Using this, we show that if **S** $\Rightarrow * \alpha$, then $\alpha_b \leq \alpha_a$ and hence that **L**(**G**) \subseteq **L**:

A straightforward approach is to show, inductively on the number of steps, **i**, in a derivation, that, if $\mathbf{S} \Rightarrow i \alpha$, then $\alpha_b \leq \alpha_a$.