REGULAR EQUATIONS

Assume that R, Q and P are sets such that P does not contain the string of length zero, and R is defined by

$$R = Q + RP$$

We wish to show that

$$R = QP^*$$

We first show that QP^* is contained in R. By definition, $R = Q + RP$.

To see if QP^* is a solution, we insert it as the value of R in $Q + RP$ and see if the equation balances

$$R = Q + QP^*P = Q(e+PP^*) = QP^*$$

Hence QP^* is a solution, but not necessarily the only solution.

To prove uniqueness, we show that R is contained in QP^*. By definition,

$$R = Q+RP = Q+(Q+RP)P = Q+QP+RP^2 = Q+QP+QP^2+RP^3 = \cdots = Q(e+P+P^2+ \cdots +P^i)+RP^{i+1}, \text{ for all } i\geq 0$$

Choose any W in R, where the length of W is equal to k. Then, from above,

$$R = Q(e+P+P^2+ \cdots +P^k)+RP^{k+1}$$

but, since P does not contain the string of length zero, W is not in RP^{k+1}. But then W is in

$$Q(e+P+P^2+ \cdots +P^k)$$

and hence W is in QP^*.

We use the above to solve simultaneous regular equations. For example, we can associate regular expressions with finite state automata as follows

$$A = B10^* + 0^*$$

$$B = B10^*1 + B0 + 0^*1$$

and therefore

$$B = 0^*1(10^*1 + 0)^*$$

Note: This technique fails if there are lambda transitions.