#4a

\[A = \lambda + Ab = b^* \]
\[B = Aa + Cb + Ba \]
\[C = Bb + Ca \]
\[C = Bba^* \]
\[B = b^*a + Bba^*b + Ba \]
\[= b^*a(ba^*b + a)^* \]

look different than
\[b^*a^+(ba^*ba^*)^* \]

but can be shown to describe same regular set
#5

Remove B

Remove C

Remove A

SAME AS REMOVE C, B, A
Recast 8(c) in F18 Example

Show \(\exists a_i b_j c_k | k \geq \max(i,j), i,j \geq 0 \) is not a CFL.

ME: L is a CFL
PL: PROVIDE N > 0
ME: \(a \cdot b \cdot c^{n+1} \in L \) NOTE \(|a \cdot b \cdot c^{n+1}| > N \)
PL: \(a \cdot b \cdot c^{n+1} = u \cdot w \cdot x \cdot y, |u \cdot w \cdot x| \leq N, |x| > 0 \)
 \(q \cdot x > 0 \) \(u \cdot w \cdot x \cdot y \in L \)

ME:

Case 1: \(u \cdot w \cdot x \) contains no c's. As \(|x| > 0 \),
\(u \cdot w \cdot x \) contains at least one 'a' or at least one 'b', but no c's.
Let \(l = 2 \), then \(u \cdot n^2 \cdot w \cdot x^2 \cdot y \) contains
either more than \(n \) a's or more than \(n \) b's (or more than \(n \) of both), in all cases, the max \(\#a', \#b' \) > \(n \) but
\(\#c' = n+1 \), so \(\#c' \) does not exceed max and \(u \cdot n^2 \cdot w \cdot x^2 \cdot y \notin L \)

Case 2: \(u \cdot w \cdot x \) contains at least one c. As
\(|u \cdot w \cdot x| \leq N \), \(u \cdot w \cdot x \) cannot contain c's.
Let \(l = 0 \), then \(u \cdot n^0 \cdot w \cdot x^0 \cdot y \) contains at most \(n \) c's and exactly \(n \) a's, so
\(\#c' = \max(\#a', \#b') \) and \(u \cdot n^0 \cdot w \cdot x^0 \cdot y \notin L \)

As all cases need to a contradiction,
L is not a CFL.