#4a

![Diagram with nodes and edges labeled a, b, and c.]

\[A = \lambda + A b = b^* \]
\[B = A a + C b + B a \]
\[C = B b + C a \]
\[C = B b a^* \]
\[B = b^* a + B b a^* b + B a \]
\[= b^* a (b a^* b + a)^* \]

Look different than \(b^* a + (b a^* b a^*)^* \)

but can be shown to describe same regular set
SAME AS Remove C, B, A

Remove C

Remove A

Remove B

#5

Allocate Exam #1 Sampler (F.18)
Recast 8(c) in F/18 example

Show \(L = \{a^i b^j c^k \mid k \geq \max(i, j), i, j \geq 0 \} \) is not a CFL.

Me: L is a CFL.

Pl.: Provide \(N > 0 \).

Me: \(\forall n \in N, n+1 \in L \) Note \(\forall n \in N, \max(n, n+1) = n+1 \), \(\forall n \in N, |n| > 0 \)

\(\forall i \geq 0 \) \(u^n v^x y^z \in L \) \(u^n \leq v \) \(u^n \leq y^z \)

Me:

Case 1: \(u^n v^x \) contains no c's. As \(|n| > 0 \),

\(u^n v^x \) contains at least one 'a' or at least one 'b', but no c's.

Let \(i = 2 \), then \(u^n w x^2 y \) contains either more than \(n \) a's or more than \(n \) b's (or more than \(n \) of both), in all cases, the \(\max(\#a's, \#b's) > n \) but \(\#c's = n+1 \), so \(\#c's \) does not exceed \(\max \) and \(u^n w x^2 y \in L \)

Case 2: \(u^n v^x \) contains at least one c. As \(|n| \leq n \), \(u^n \) cannot contain c's.

Let \(i = 0 \), then \(u^n w x^2 y \) contains at most \(n \) c's and exactly \(n \) a's, so \(\#c's \leq \max(\#a's, \#b's) \) and \(u^n w x^2 y \in L \)

As all cases need to a contradiction, L is not a CFL.