Languages

Grammar

CFL
DSEL
REG

CFG
DCFG
LR(k)
LL(k)

K. Knuth
LR(1) = DCFL
1965
LL(k+1) ≠ LL(k)

R \rightarrow LL(k) = DCFL
1969

Early work: Precedence grammars 1963

LR
Left-to-right
Reverse rightmost deriv.
(Left is deferred to bottom of tree)

LL
Left-to-right
Leftmost deriv.
CNF

A → a
A → AB

IF \(\lambda \in L \) THEN

S → \(\lambda \)
BUT S NEVER ON RHS OF ANY RULE

CONTROLLED GROWTH IN TREE
(BASIS OF PUMPING LEMMA)

DIVIDE & CONQUER
(BASIS OF DYNAMIC PROGR. PARSER)
Conversion to CNF

1. **Remove nulling rules** (A→λ)
2. **Remove unit (chain) rules** (A→B)
3. **Remove non-productive non-terminals**
 \[\text{Productive if } A^* \Rightarrow w \quad w \in \Sigma^* \]
4. **Remove unreachable symbols**
 \[S^* \Rightarrow \epsilon A \] then A is **reachable**

Note: (1) Can create instances of (2)
1. Assignment #7 (c)

2. Pumping Lemma - Conceptually for \(n+1 \) Internal Nodes

 (a) Proof via derivations

 \[S \Rightarrow^* \text{unty} \Rightarrow^* \text{untxy} \Rightarrow^* \text{unwxy} \]

 \[A \Rightarrow T \Rightarrow^* \text{nTx} + T \Rightarrow^* W \]

 \[\text{AND} T \Rightarrow \text{nTxi} \Rightarrow^* 0 \]

 (b) Tree for visualization

3. \(a^n b^n c^n \) not CFL

4. Note \(a^n b^n c^n = a^n b^n c^* \cup a^* b^n c^n \)

 so CFL not closed under \(\cup \)

 Also since if CFL were closed under complement, we can get \(\cup \)

 using complement \& \(\cup \), so

 CFL not closed under complement
5. \text{MAX}

L1 = \{a^ib^jck \mid k \leq i \text{ or } k \leq j \}

\text{max}(L1) = a^b c \text{max}(i,j)

Show above is not a CFL

Assume it is

PL: N > 0
ME: \alpha \in \Sigma \cup \Gamma \subseteq L
\Rightarrow |\alpha| \leq N, |\alpha| > 0

ME:

CASE 1: \text{NWx contains no c's} AS |\text{NWx}| > 0, \text{NWx contains either some a's, some b's or both a's+b's}

LET \text{L} = 2 \text{ then we either have more than N a's, more than N b's or more than N of each and so \#c's is not max of \#a's+\#b's} \text{ UN}\text{Wxwy} \notin L

CASE 2: \text{NWx contains some c's, it might contain b's but cannot contain a's AS |\text{NWx}| \leq N.}

LET \text{L} = 0 \text{ then we have fewer c's than a's and we have at most N b's}

SO \text{UWY = UNWxwy} \notin L

This covers all cases

Thus CFL not closed under MAX
6. \[\operatorname{min} \]
 \[L_2 = \{ aibic \mid k \geq i \text{ or } k \geq j \} \]
 \[\operatorname{min}(L_2) = a^i b^j c^{\min(i,j)} \]
 Show above is not a CFL

 Assume it is
 PL: \[N \geq 0 \]
 ME: \[a^n b^m c^n \in L \]
 PL: \[a^n b^m c^n = u_0 w_0 x_0 y_0 z_0, \quad \|x_0\| \leq N, \quad \|x_0\| \geq 0 \]
 \& \quad \text{for all } u_0 w_0 x_0 y_0 z_0 \in L

 ME:
 \text{Case 1: } nx \text{ contains no } c's

 Case 2: \(nx \) contains some \(c's \)

 Thus CFL not closed under \(\operatorname{min} \)
7. \(L_3 = \{ w w \mid w \in \{a, b\}^+ \} \)

Show above is not a CFL

Assume it is

\(P.L. \): \(n > 0 \)

\(M.E. \): \(a^n b^n a^n b^n \)

\(P.L. \): \(a^n b^n a^n b^n = \text{a valid string} \) \(\Rightarrow n > |w| \geq 0 \) \(\& \) \(n \geq 0 \) \(\text{such that } x_i y \leq L \)

\(M.E. ! \)

Case 1: \(n x \) contains some \(a \)'s
As \(|n w x| \leq n \), \(n w x \) must only have \(a \)'s from 1st or 2nd subsequence of \(a \)'s
But not both
Let \(l = 0 \) then one of the blocks of \(a \)'s separated by \(b \)'s has fewer \(a \)'s than the other and so \(w y \neq u^n \) \(\text{for } x \neq y \) \(\& L \)

Case 2: Same as above but focused on \(b \)'s

Thus \(L_3 \) not a CFL

Note from earlier \(L_3 \) is a CFL.

So CFLs are again shown to not be closed under complement.
8. SOLVABLE CFL PROBLEMS

WGL?
L = ∅ or L ≠ ∅
L finite or L infinite

9. MORE CLOSURE

INTERSECTION WITH REGULAR
SKETCH PROOF ONLY

SUBSTITUTION
CHANGE EVERY a ∈ Σ IN RHS
OF RULES TO S_0 WHERE
S_0 IS START SYMBOL OF G_0
AND L(G_0) = L_0 WHERE
f(a) = L_0

10. GO OVER PRIOR CLOSURES BY

OP(L) = Υ (f(L) ∩ REGEX)
WHERE f(a) = \{ a, a' \} if f(a) = a'
\& \ f(a) = a, a \in Σ

PREFIX, SUFFIX, SUBSTRING, ETC.
ALSO QUOTIENT WITH REGULAR