Derivations in Rewriting Systems

Assume strings over some alphabet \(\Gamma \)

For grammars, \(\Gamma = V \cup \Sigma \)

For semi-Thue systems \(\Gamma = \Sigma \)

Assume rules \(\alpha_i \rightarrow \beta_i \) \(1 \leq i \leq n \)

Simple application is, if \(\omega = \delta \alpha_i \beta_i \gamma \)

Then \(\omega \Rightarrow \omega' \) if \(\omega' = \delta \beta_i \gamma \)

This is a one-step derivation.

We extend to \(\Rightarrow, \Rightarrow*, \Rightarrow^* \)

\(\omega \Rightarrow \omega' \) IFF \(\omega = \omega' \)

\(\omega \Rightarrow \omega' \) IFF \(\exists \omega'', \omega \Rightarrow \omega'' \Rightarrow \omega' \) \(\Rightarrow^* \)

\(\omega \Rightarrow \omega' \) IFF \(\exists \omega'', \omega \Rightarrow \omega'' \Rightarrow \omega' \) \(\Rightarrow^* \)

\(\omega \Rightarrow^* \omega' \) IFF \(\omega \Rightarrow \omega' \) FOR SOME \(\Rightarrow^* \)

\(\omega \Rightarrow^* \omega' \) \(\Rightarrow^* \) IS THE REFLEXIVE, TRANSITIVE

CLOSURE OF \(\Rightarrow \)

\(\omega \Rightarrow \omega' \) IFF \(\omega \Rightarrow^* \omega' \) FOR SOME \(\Rightarrow^* \)

\(\Rightarrow \) IS THE TRANSITIVE CLOSURE

OF \(\Rightarrow \)

\(\Rightarrow \) \(\Rightarrow^* \) AND ITS VARIANTS DENOTE THE

OPERATION (OR RELATION) OF

DERIVATION
Derivations in Grammars

Let $G = (V, \Sigma, R, S)$ such that $S \notin V$

Let \Rightarrow be the derivation operation (relation) associate with R applied to strings over $V \cup \Sigma$

Note: Any string over $V \cup \Sigma$ is called a sentential form.

Any string over Σ is a sentence.

We care mostly about sentences derivable from the trivial sentential form S

$$L(G) = \{ w \mid w \in \Sigma^* \text{ and } S \Rightarrow w \}$$

Can limit to \Rightarrow

Since S is not a sentence.
DFA to RIGHTLINEAR

\(Q = (Q, \Sigma, S, q_0, F) \)
\(G = (Q, \Sigma, R, q_0) \)

\(R: \)
\(q \rightarrow a P \quad \text{WHENEVER} \quad s(q, a) = P \)
\(q \rightarrow \lambda \quad \text{WHENEVER} \quad q \notin F \)

Prove: \(s^*(q_0, w) \in F \iff q_0 \Rightarrow^* w \)

Lemma: Show \(s^*(q, w) = P \iff q \Rightarrow^* w_P \)

Use induction on \(|w|\)

Basis: \(|w| = 1 \quad s^*(q, \lambda) = q \)
\(q \Rightarrow^\lambda q \), i.e., \(q = \lambda q \)

IH: \(|w| = k \). Assume if \(|w| = k\) then
\(s^*(q, w) = P \iff q \Rightarrow^* w_P \)

IS: \(|w| = k+1\). Hence \(w = xa_x\), \(|x| = k \)

By IH \(s^*(q, x) = P \iff q \Rightarrow^* x_P \)

Let \(s^*(q, xa) = s(s^*(q, x_a)) = s(P, a) = t \)

By construction \(s(P, a) = t \iff P \rightarrow a \epsilon R \)

Thus, \(q \Rightarrow^* x_P \Rightarrow xa \).

And so \(q \Rightarrow^* w\).
Final Step: DFA to Right Linear

Lemma shows \(S^*(q,w) = p \iff q \Rightarrow w \in p \)

Clearly then \(S^*(q_0,w) = p \iff q_0 \Rightarrow w \in p \)

But then \(w \in L(A) \iff S^*(q_0,w) \in F \)

And so \(w \in L(A) \iff q_0 \Rightarrow w \in p \in F \)

1. If \(q_0 \Rightarrow w \in p \in F \)
2. If \(q_0 \Rightarrow w \in p \in F \)

But then

\(w \in L(A) \iff w \in L(G) \)
CONTEXT-FREE GRAMMARS

\[G = (V, \Sigma, R, S) \]

\(V \): finite set of variables (non-terminals)
\(\Sigma \): finite set of terminals
\(S \): start symbol, \(\in \Sigma \)
\(R \): rules, each of form

\[A \to \alpha \quad A \in V \quad \alpha \in (V \cup \Sigma)^* \]

EXAMPLE NON-REGULAR CFLs

\[S \to aSB | \lambda \quad L = \{ a^n b^n \mid n \geq 0 \} \]

\[S \to \lambda | a | b | aSa | bSb \]
\[L = \{ \text{palindromes over } \{a, b\} \} \]

\[S \to aSBs | bSaS | \lambda \]
\[L = \{ \text{strings over } \{a, b\} \text{ with equal number of a's and b's} \} \]
Using Notation

This notation is useful for inductive proofs.

Consider \(G = (\Sigma, \Gamma, \delta, S, \rho) \) where
\[R: S \Rightarrow \lambda | \alpha | \beta | \sigma | \lambda S \beta \lambda \]

Claim: \(L(G) = \{ w | \text{w is } \{a, b\}^* \text{ and w is a palindrome} \} \)

Lemma: \(S \Rightarrow \beta \), where \(\beta \) contains a non-terminal
iff \(\beta = \text{x } S \text{x } \rho \), where \(x \in \{a, b\}^* \). We attack
by considering \(S \Rightarrow \beta \), showing \(\beta = \text{x } S \text{x } \rho \)
for any and all \(x \in \{a, b\}^* \), \(|x| = \rho \)

Base: \(\rho = 0 \), \(S \Rightarrow S \) by defn. of \(\Rightarrow \). But \(S = \lambda S \lambda \)
and this is only string of form \(\text{x } S \text{x } \rho \), \(|x| = 0 \)

Induction Hypothesis: \(\rho = n \), assume \(S \Rightarrow \beta \) iff \(\beta = \text{x } S \text{x } \rho \)

Induction Step: \(\rho = n + 1 \), show \(S \Rightarrow \beta \) iff \(\beta = \text{x } S \text{x } \rho \), \(x \in \{a, b\}^* \), \(|x| = n + 1 \)

By defn. of \(\Rightarrow \), \(S \Rightarrow \beta \) iff \(S \Rightarrow \alpha \Rightarrow \beta \)

By rules in \(R \) and our constraint, that we retain
a variable (S) in the derivation,

\[\alpha = \sigma | \sigma A | \sigma A \sigma | \lambda \sigma \]

By \(\text{IH} \), \(\beta = \text{x } S \text{x } \rho \) for any and all \(x \in \{a, b\}^* \), \(|x| = n \)

Combining, we get \(S \Rightarrow \text{x } S \text{x } \sigma \) or \(S \Rightarrow \text{x } S \text{x } \lambda \)

\(x \Rightarrow \lambda x \) gives us all and only those strings
of length \(n+1 \) in \(\{a, b\}^* \). This proves IS
and hence the original hypothesis.

Theorem: All strings in \(\{ w | \text{w is } \{a, b\}^* \text{ and w is a palindrome} \} \)
are of form \(\text{x } S \text{x } \rho \), \(x \in \{a, b\}^* \) or \(x \Lambda x \rho \)

Applying \(S \Rightarrow \gamma \) or \(S \Rightarrow \sigma \) or \(S \Rightarrow \lambda \) gets
all and only these forms and the application
of such rule is the only means of
deriving a sentence in \(L(G) \).
A PRACTICAL GRAMMAR
(Sort of)

\[G = (\{E, a, +, -, *, /, (,)\}, R, E) \]

\[R : E \to E + E \mid E - E \mid E \cdot E \mid E / E \mid (E) \]

A DERIVATION

\[E \Rightarrow E + E \Rightarrow E \cdot E \cdot E \]
\[\Rightarrow a \cdot E + E \Rightarrow a \cdot a + E \]
\[\Rightarrow a \cdot a + a \]

TREE VERSION

```
  E
 /\  
E+ E
 /\  
 E* E
 /\  
 a  a  a
```

FRONTIER IS

\[a \cdot a + a \]

OOPS: Can get by

```
  E
 /\  
E *  
 /\  
 a   a
```

SAME FRONTIER

\[E \Rightarrow E * E \Rightarrow a \cdot E \Rightarrow a \cdot E + E \]
\[\Rightarrow a \cdot a + E \Rightarrow a \cdot a + a \]
Ambiguity

Grammar is ambiguous if there is a string in language such that

W can be derived from S by two distinct leftmost deriv.
(always rewrite leftmost non-terminal before others)

\[S \xrightarrow{LM} w + S \xrightarrow{LM} w \] where intermediates differ

W can be derived from S by two distinct rightmost derivations

\[S \xrightarrow{RM} w + S \xrightarrow{RM} w \] where paths differ

W has two distinct parse trees topologically different with same frontier

A language L is inherently ambiguous if all grammars for L are ambiguous
Arithmetic Language is not Ambiguous

Alternative Grammar Rules

\[R: E \rightarrow E + T \mid E - T \mid T \]
\[T \rightarrow T \times F \mid T / F \mid F \]
\[F \rightarrow (E) \mid a \]

Lowest, Left to Right

\[a \times a + a \] can only be gotten by **Leftmost**

\[E \Rightarrow E + T \Rightarrow T + T \Rightarrow T \times F + T \]
\[\Rightarrow F \times F + T \Rightarrow a \times F + T \Rightarrow a \times a + T \]
\[\Rightarrow a \times a + F \Rightarrow a \times a + a \]

Highest, Left to Right

\[E \Rightarrow E + T \Rightarrow E + F \Rightarrow E + a \Rightarrow T + a \]
\[\Rightarrow T \times F + a \Rightarrow T \times a + a \]
\[\Rightarrow F \times a + a \Rightarrow a \times a + a \]

Tree

```
     E
    /  \
   /    \
  E     T
 /      /  \
/        F   F
 T        /   /  \
 /     a    a    a
 F
    /  \
   a   a
```
An Inherently Ambiguous Language

\[L = \{ a^i b^j c^k \mid i = j \text{ or } j = k \} \]

\[
S \rightarrow A <bc> | <ab> c \\
A \rightarrow a A | \lambda \\
C \rightarrow c C | \lambda \\
<bc> \rightarrow b <bc> c | \lambda \\
<ab> \rightarrow a <ab> b | \lambda
\]

can get \(L = \{ a^i b^j c^k \mid i = j \text{ or } j = k \} \) on two paths and there is no way to avoid this
Some Easy CFL Closures

$G_1 = (V_1, \Sigma, R_1, S_1) \quad G_2 = (V_2, \Sigma, R_2, S_2) \quad V_1 \cap V_2 = \emptyset$

Union

$G = (V_1 \cup V_2 \cup \{s\}, \Sigma, R, S)$

$R = R_1 \cup R_2 \cup \{s \rightarrow s_1s_2 \mid s_1 \in \text{Lang}(G_1) \land s_2 \in \text{Lang}(G_2)\}$

or \(s \rightarrow S_1S_2 \).

Concatenation

$R = R_1 \cup R_2 \cup \{s \rightarrow S_1S_2\}$

\[
R = R_1 \cup \{s \rightarrow S_1S_1 \mid \lambda \}
\]

We will see closure under

Intersection with regular
Substitution/Homomorphism

But lack of closure under

Intersection with CFL

Complement
An Interesting CFL

We will prove that \(\{ww \mid w \in \{a, b\}^*\}\) is not a CFL.

The complement of above has two parts

(a) Odd length strings over \(\{a, b\}\)

Clearly regular

\[S \rightarrow aT \mid bT \]

\[T \rightarrow 2 \mid aS \mid bS \]

(b) \(\{xy \mid x, y \in \{a, b\}^+ \text{ and } |x| = |y| \text{ and } x \neq y\}\)

Looking at (b) we need one transcrition error from \(x\) to \(y\)

It is a \(\exists\) rather than a \(\forall\)

As is \(ww\)
VIEWING THE STRINGS
IN \(S \times y \mid xy \in \Sigma^* 0^* \), \(|x| = |y|, x \neq y\)

View 1

\[
x_1 a x_2 y_1 : b y_2 \quad \text{or} \quad x_1 b x_2 y_1 : a y_2
\]

\(|x_1| = |y_1|, \quad |x_2| = |y_2|

View 2

\[
x_1 a y_1 x_2 b y_2 \quad \text{or} \quad x_1 b y_1 x_2 a y_2
\]

\(\text{mid} \quad \text{mid}\)

\[
S \rightarrow AB \mid BA
\]

\[
A \rightarrow CAC \mid a
\]

\[
B \rightarrow CBC \mid b
\]

\[
C \rightarrow a \mid b
\]
Bottom up vs Top Down Parsing

Bottom up uses input to drive process
It is driven by shift/reduce
Shift is push character on a stack
Reduce is replace "handle" of top of stack
with variable A where A \rightarrow "handle"
This is a reduce.

Bottom up hates right recursion
But loves left recursion

Example: \[E \rightarrow E + T \quad T \rightarrow F \ldots \quad F \rightarrow a \]

\[a + a \]

Shift a
Reduce a to F
Reduce F to T
Reduce T to E
Shift +
Shift a
Reduce a to F
Reduce F to T
Reduce E + T to E
Top Down vs Bottom Up Parsing

Top Down is predictive and commonly implemented using recursive descent.

If have \(E \rightarrow E + T | E - T | E \)

Which RHS do we use?

Let's say input is \(a + a \), the plus could help us predict

\[
\begin{array}{c}
E \\
/ \big/ \\
E + T
\end{array}
\]

The problem is when see \(E \) again, we would deterministically make same prediction and get infinite descent on \(E \).

Top Down hates left recursion but loves right recursion.
Back to Arithmetic Expressions

E → E + T | E - T | T
T → T * F | T / F | F
F → (E) | α

Is left recursive, this is disastrous for top down

Consider any non-terminal A

Where \(A \rightarrow A_1 A_2 \cdots A_r \beta_1 \cdots \beta_j \)

Not left rec. in A

Can see we get

\[A \rightarrow (\beta_1 + \beta_2 + \cdots + \beta_j)(\alpha_1 + \alpha_2 + \cdots + \alpha_r)^* \]

Can redo as

\[A \rightarrow \beta_1 A' | \cdots | \beta_j A' \]

\[A' \rightarrow \alpha_1 A' | \cdots | \alpha_r A' | \lambda \]

E → TE'
E' → +TE' | -TE' | X

T → FT'
T' → *FT' | /FT' | X

F → (E) | α