(PE\W\ \T\\ C:@E:—CUQSJ\/WRNQT\@Q$

%@g&e \:\)MQT’L@NS are VYRTs

Co; (R = O C ONKTRANTR
s 12 -

: = 4 [RoTECTIoNS
’L (X”‘ "’Xh\ g (THenTi ™)

() = K+ §UCC~@SS@§>

(ucRenaST
%U\LD MigRE N\ Fr

(R =B (G D, Gk(xSB

//2/
St Com Pl .\ 1OK]

Rz FO
F(3gD 7 (RgFs>

\Nbua\ (3!

i\)@\‘\f e (PRIMITINE &KQRS\@K\D

Ruwdwe New WREs

RehiTion ! FermnbL
‘*‘(X)‘D\: T
4 (X, %Jrﬁ :ég%(x)\éffr(x%\\w

CemPes 1 T1 0N
ooty - Leas CoRmMAL
4O = X
Xk (> = (< +4 N

MUL"\‘\‘PL.\ CE\T\OMi FORM%L

g (5,052 Gl
% (»(,\Xr\\‘z W (%, 7%6()%33}
A %/%33\:' + (T \(7&,%63)1’2 (K/‘éﬁﬁ\w

N\U LT end C@rﬂ@ld ‘ LESg. Fdemm,

YO =0
NG C«g\b = X&Q‘ﬁ + X

W\ORE?‘%esxc @(R T B-METIC

P@ SCDSCESIOR Cu N\\‘rﬂebw
O—\ =D
(%A~ =X

S\J BTRACTION 'l CL\M\TFDB

N D =X
Y ><gr\\=~’ Cxﬂ%\"\

Vﬂcvo =

O' =\
(A - SURICED

R@uuba} i Zar o

g{ﬁ\ = W& (= ’=><\ K?Czﬁj | T & SuCkH 2=
| = Y A\ OVReRW\SE
C(py= |- PO>
G+ = G?(x\ % (56O <))

4 ((rr2- PN * (S6)EXD)

Cly = mz(2oOLREI T 1wz

= X O THERW\SE

Leoy=0o
C (A = pe (@S) LT @\

D siond DS BILTY

TOWISION

X /] O = S weey H IROE

/A &\\ = pz (2 =X [ED¥ (YT x 1
DBty

x\y = ((4 /% x 2y T &
= XPOVENTS
VO\L?Z—(;\ o=\ 1 msee\/m—e
KN %—VX X XQXAAW

P AL T
V\R%T’?ZP:C\OR(%\ /v\'é CQ&E-‘*’X\Y%\XK
|F NONE

\aBeine (XN = ?\esﬂzacvd? (=% & (x>

QQ = (‘03 A

e (#+\D=ME (??’““E(’“y 22Reme()! +Yickee)

Pere (L) S PL

PreeRreN Ve

Pairing Functions
. pair(xy) = <xy>=2* @y+1)-1

 with inverses
<z>, = exp(z+1,0)
<z>,=((z+1)//2<=1)-1)/] 2

* These are very useful and can be extended to
encode n-tuples

<x,y,z> = <X, <y,z> > (note: stack analogy)

10/28/19 COT 4210 © UCF 268

Pairing Function is 1-1 Onto

Prove that the pairing function <x,y> =2Ax (2y +1) -1
is 1-1 onto the natural numbers.
Approach 1:

We will look at two cases, where we use the following
modification of the pairing function, <x,y>+1, which implies
the problem of mapping the pairing function to Z".

10/28/19 © UCF EECS 269

Case 1 (x=0)

Case 1:
For x =0, <0,y>+1 = 20(2y+1) = 2y+1. But every odd
number is by definition one of the form 2y+1, where y=0;

moreover, a particular value of y is uniquely associated
with each such odd number and no odd number is

produced by 2%(2y+1) when x>0. Thus, <0,y>+1 is 1-1 onto
the odd natural numbers.

10/28/19 © UCF EECS 270

Case 2 (x > 0)

Case 2:

For x > 0, <x,y>+1 = 2X(2y+1), where 2y+1 ranges over all odd number
and is uniquely associated with one based on the value of y (we saw
that in case 1). 2* must be even, since it has a factor of 2 and hence
2%(2y+1) is also even. Moreover, from elementary number theory, we
know that every even number except zero is of the form 2*z, where
x>0, z is an odd number and this pair x,z is unique. Thus, <x,y>+1 is 1-
1 onto the even natural numbers, when x>0.

The above shows that <x,y>+1 is 1-1 onto Z*, but then <x,y> is 1-1 onto
N, as was desired.

10/28/19 © UCF EECS 271

u Recursive

4th Model

A Simple Extension to Primitive
Recursive

u Recursive Concepts

 All primitive recursive functions are algorithms

since the only iterator is bounded. That's a clear
limitation.

* There are algorithms like Ackerman’s function
that cannot be represented by the class of
primitive recursive functions.

 The class of recursive functions adds one more
iterator, the minimization operator (n), read “the
least value such that.”

10/28/19 COT 4210 © UCF 273

Ackermann’s Function

A1, j)=2j forjz21
A(i, 1)=A(i-1, 2) fori 2 2
A(i, J)=A(i-1, A(i, j-1)) fori, j2 2

Wilhelm Ackermann observed in 1928 that this is not a
primitive recursive function.

Ackermann’s function grows too fast to have a for-loop
implementation.

The inverse of Ackermann’s function is important to analyze
Union/Find algorithm. Note: A(4,4) is

a super exponential number involving six levels of
exponentiation. a(n) = A-1(n, n) grows so slowly that it is less
than 5 for any value of n that can be written using the number
of atoms in our universe.

10/28/19 COT 4210 © UCF 274

Union/Find

o Start with a collection S of unrelated elements —
singleton equivalence classes

« Union(x,y), x and y are in S, merges the class
containing x ([x]) with that containing y ([y])

« Find(x) returns the canonical element of [x]

« Can see if x=y, by seeing if Find(x)==Find(y)
 How do we represent the classes?

* You should have learned that in CS2

10/28/19 COT 4210 © UCF 275

The u Operator

e Minimization:
If G is already known to be recursive, then
so is F, where

F(x1,...,xn) = py (G(y,x1,...,xn) i\é

« We also allow other predicates besides
testing for one. In fact any predicate that
iS recursive can be used as the stopping
condition.

10/28/19 COT 4210 © UCF 276

(PE\W\ \T\\ C:@E:—CUQSJ\/WRNQT\@Q$

%@g&e \:\)MQT’L@NS are VYRTs

Co; (R = O C ONKTRANTR
s 12 -

: = 4 [RoTECTIoNS
’L (X”‘ "’Xh\ g (THenTi ™)

() = K+ §UCC~@SS@§>

(ucRenaST
%U\LD MigRE N\ Fr

(R =B (G D, Gk(xSB

//2/
St Com Pl .\ 1OK]

Rz FO
F(3gD 7 (RgFs>

\Nbua\ (3!

i\)@\‘\f e (PRIMITINE &KQRS\@K\D

Ruwdwe New WREs

RehiTion ! FermnbL
‘*‘(X)‘D\: T
4 (X, %Jrﬁ :ég%(x)\éffr(x%\\w

CemPes 1 T1 0N
ooty - Leas CoRmMAL
4O = X
Xk (> = (< +4 N

MUL"\‘\‘PL.\ CE\T\OMi FORM%L

g (5,052 Gl
% (»(,\Xr\\‘z W (%, 7%6()%33}
A %/%33\:' + (T \(7&,%63)1’2 (K/‘éﬁﬁ\w

N\U LT end C@rﬂ@ld ‘ LESg. Fdemm,

YO =0
NG C«g\b = X&Q‘ﬁ + X

W\ORE?‘%esxc @(R T B-METIC

P@ SCDSCESIOR Cu N\\‘rﬂebw
O—\ =D
(%A~ =X

S\J BTRACTION 'l CL\M\TFDB

N D =X
Y ><gr\\=~’ Cxﬂ%\"\

Vﬂcvo =

O' =\
(A - SURICED

R@uuba} i Zar o

g{ﬁ\ = W& (= ’=><\ K?Czﬁj | T & SuCkH 2=
| = Y A\ OVReRW\SE
C(py= |- PO>
G+ = G?(x\ % (56O <))

4 ((rr2- PN * (S6)EXD)

Cly = mz(2oOLREI T 1wz

= X O THERW\SE

Leoy=0o
C (A = pe (@S) LT @\

D siond DS BILTY

TOWISION

X /] O = S weey H IROE

/A &\\ = pz (2 =X [ED¥ (YT x 1
DBty

x\y = ((4 /% x 2y T &
= XPOVENTS
VO\L?Z—(;\ o=\ 1 msee\/m—e
KN %—VX X XQXAAW

P AL T
V\R%T’?ZP:C\OR(%\ /v\'é CQ&E-‘*’X\Y%\XK
|F NONE

\aBeine (XN = ?\esﬂzacvd? (=% & (x>

QQ = (‘03 A

e (#+\D=ME (??’““E(’“y 22Reme()! +Yickee)

Pere (L) S PL

PreeRreN Ve

Pairing Functions
. pair(xy) = <xy>=2* @y+1)-1

 with inverses
<z>, = exp(z+1,0)
<z>,=((z+1)//2<=1)-1)/] 2

* These are very useful and can be extended to
encode n-tuples

<x,y,z> = <X, <y,z> > (note: stack analogy)

10/28/19 COT 4210 © UCF 268

Pairing Function is 1-1 Onto

Prove that the pairing function <x,y> =2Ax (2y +1) -1
is 1-1 onto the natural numbers.
Approach 1:

We will look at two cases, where we use the following
modification of the pairing function, <x,y>+1, which implies
the problem of mapping the pairing function to Z".

10/28/19 © UCF EECS 269

Case 1 (x=0)

Case 1:
For x =0, <0,y>+1 = 20(2y+1) = 2y+1. But every odd
number is by definition one of the form 2y+1, where y=0;

moreover, a particular value of y is uniquely associated
with each such odd number and no odd number is

produced by 2%(2y+1) when x>0. Thus, <0,y>+1 is 1-1 onto
the odd natural numbers.

10/28/19 © UCF EECS 270

Case 2 (x > 0)

Case 2:

For x > 0, <x,y>+1 = 2X(2y+1), where 2y+1 ranges over all odd number
and is uniquely associated with one based on the value of y (we saw
that in case 1). 2* must be even, since it has a factor of 2 and hence
2%(2y+1) is also even. Moreover, from elementary number theory, we
know that every even number except zero is of the form 2*z, where
x>0, z is an odd number and this pair x,z is unique. Thus, <x,y>+1 is 1-
1 onto the even natural numbers, when x>0.

The above shows that <x,y>+1 is 1-1 onto Z*, but then <x,y> is 1-1 onto
N, as was desired.

10/28/19 © UCF EECS 271

u Recursive

4th Model

A Simple Extension to Primitive
Recursive

u Recursive Concepts

 All primitive recursive functions are algorithms

since the only iterator is bounded. That's a clear
limitation.

* There are algorithms like Ackerman’s function
that cannot be represented by the class of
primitive recursive functions.

 The class of recursive functions adds one more
iterator, the minimization operator (n), read “the
least value such that.”

10/28/19 COT 4210 © UCF 273

Ackermann’s Function

A1, j)=2j forjz21
A(i, 1)=A(i-1, 2) fori 2 2
A(i, J)=A(i-1, A(i, j-1)) fori, j2 2

Wilhelm Ackermann observed in 1928 that this is not a
primitive recursive function.

Ackermann’s function grows too fast to have a for-loop
implementation.

The inverse of Ackermann’s function is important to analyze
Union/Find algorithm. Note: A(4,4) is

a super exponential number involving six levels of
exponentiation. a(n) = A-1(n, n) grows so slowly that it is less
than 5 for any value of n that can be written using the number
of atoms in our universe.

10/28/19 COT 4210 © UCF 274

Union/Find

o Start with a collection S of unrelated elements —
singleton equivalence classes

« Union(x,y), x and y are in S, merges the class
containing x ([x]) with that containing y ([y])

« Find(x) returns the canonical element of [x]

« Can see if x=y, by seeing if Find(x)==Find(y)
 How do we represent the classes?

* You should have learned that in CS2

10/28/19 COT 4210 © UCF 275

The u Operator

e Minimization:
If G is already known to be recursive, then
so is F, where

F(x1,...,xn) = py (G(y,x1,...,xn) i\é

« We also allow other predicates besides
testing for one. In fact any predicate that
iS recursive can be used as the stopping
condition.

10/28/19 COT 4210 © UCF 276

\f@ OV ALENCE™

TN S M <PRITREC =T

U e RNLpUABET WUTH O Ac Bupow

Q?VQE'sBﬂT\NG © ORDPS OV 6. L ARCER ALAARBET S

Z: {a)\nc}

G COD

g

Woep =

o\ 0O

oo oMot

Eﬂmb\wé N _OasTRSTRNED
— G%c.@?ﬂo&

STR G PRPROMIE

\’_’/-j

ob..-

TN S Restster WheHive

Canw STvre Tm ITD N TusT
THREE RKREGISTERS

Cpg SHIET LEET S1a MULTIPWY BY &
QSSY ME Yy =0) ¥a=0

X, bEC(\ (K'k'\)%‘\‘q‘\

| v, =X ¥ 2

Kals 1RC e (2D -

2 Y7, =\
YA D, INC v, (X+3D v =0
X4+, NG gy ¢ v
X44. \DECVb(x-x;,X%B ? =Ny
xS, [Ny (D » =0
X+6.

Cots st ET RIGHT VIE DRIDE BY 3

RMm & €<
\ D erur RN (s

A ALY Y
F\ ?a © o ?T') ?ﬂ‘*’j

CovTENTS OF ReesTeR &

WwrnerRE \q\ B3
SxTovTE INSTR. S

AND WwE fRe peovT 0

C{—\/t\) S \MNUVLHTE B Y

I INCR LA
pﬂ‘\':\ A —> ?ﬂ-\k_?\(’x
AR K}E—C\r[s s
)_Pﬂ_,‘,‘}\)(-)(— ?K'H-SX
Paxd = Pors”
AYRN
Prrm+t - X

Lo HALTING conDITION

DeTAls N SYRPLEMEITRC. \ B ES

Universal Machine

* |In the process of doing this reduction, we
will build a Universal Machine.

* This is a single recursive function with two
arguments. The first specifies the factor
system (encoded) and the second the
argument to this factor system.

* The Universal Machine will then simulate
the given machine on the selected input.

10/28/19 © UCF EECS 277

Encoding FRS

* Let A_._“ AAN?—U‘_Y ANN“—UNV_ _Am:“—uzvv be
some factor replacement system, where
(a;,b;) means that the i-th rule is

ax — b
* Encode this machine by the number F,

N: WQ_ MF ‘NQNH H@N o Nw MNM_ Nw WH Nw 2n+1 Nw 2n+2

10/28/19 © UCF EECS 278

Simulation by Recursive # 1

 We can determine the rule of F that applies to x by

RULE(F, x) =pnz (1 <z < exp(F, 0)+1) [exp(F, 2*z-1) | x]

* Note: if x is divisible by a;, and i is the least integer for which this is
true, then exp(F,2*i-1) = a; where a; is the number of prime factors
of F involving p,i.4- Thus, RULE(F,x) = i.

If X is not divisible by any a;, 1=isn, then x is divisible by 1, and
RULE(F,x) returns n+1. That's why we added pap+1 P2n+2-

e Given the function RULE(F,x), we can determine NEXT(F,x), the
number that follows x, when using F, by

NEXT(F, x) = (x // exp(F, 2*RULE(F, x)-1)) * exp(F, 2*RULE(F, x))

10/28/19 © UCF EECS 279

Simulation by Recursive # 2

* The configurations listed by F, when
started on x, are

CONFIG(F, x, 0) = x

CONFIG(F, x, y+1) = NEXT(F, CONFIG(F, x, y))

 The number of the configuration on which
F halts is

HALT(F, x) = n y [CONFIG(F, x, y) == CONFIG(F, x, y+1)]

This assumes we converge to a fixed point only if we stop

10/28/19 © UCF EECS 280

Simulation by Recursive # 3

* A Universal Machine that simulates an
arbitrary Factor System, Turing Machine,
Register Machine, Recursive Function can

then be defined by
Univ(F, x) = exp (CONFIG (F, x, HALT (F, x)), 0)

* This assumes that the answer will be
returned as the exponent of the only even
prime, 2. We can fix F for any given
Factor System that we wish to simulate.

10/28/19 | | © UCF EECS 281

PCHINE 1IN p‘Q‘T‘DN

o
e = it B
SR X
F.ShOX DRIAX Sx»K BS‘K Bt
X - aX
T

r_\h
é[‘ ’,‘A 7‘("77&

2 gy |
DL Pzz- V<3

{\s=2

NEXTC?>§§3> g
@\JL;E' (F>523 e
el ST & bl g
RuL€ (0 '$ 2
Rung (B~ Pi
Nexv (% 12D = 'y // YRVT x
ity 2Rgt &)= Saat
Con®ie (6 e £
CovFe s il
Qou?\GCg> 2ty 30 T . he
COMF(G(FﬁQS\‘LvLD =2 EHQLT(E - ;
. 325\3552 D\

[QEzvvT Por EXAMLE

Acan

)
4\‘&9—\3’ (Fj%D*qu :‘J[

e, ;
Uk (F) fff’Sﬂ = px (Cewrely R $),0)

e Q’;:‘-)o)

S npw BaAse Guwctious Des

" lUR\NG ComSPuTABLE
Ca:\ (X\)“‘an\:&
(R N*R
W N
L Gt a st) = XL
CY\—-L+\

S = X+
CllE

NOUJ S How TURING QmPuTPr%L,e’ CLOSED

UNDETL CONPOS\T\DU) \NDUCHO!J AUD Minan TN

Terniie GneSleiistreRmmL. IoTE=

UN \\J ERSHC N\PFQH (NE

Reguy AN INTERERETER FOR

PRoceAms ™ SOME MODEL OF
COMPUTATION W RTTEN (N TTHAT MODET

U ('X/\A\:' @K(%D

M@cuTy w@$ﬂosaem

Ag%gme @&\,GQP_\THW\\C ?er\c@?\‘-e“ H&L:r

AT (Q)KB T (Q%GQ\\/

D\SAGQ&\E @ %}f 2 \;\&cx\:« (xjﬂj
QM@T’

CL\EYA—QL.\/

i ALAUT(K KD rhe Disterse (=0

e A BaCT (#5590 ey Dishcee OV
O,

\'L Gy T (»g,xB s D&S%(&E\? () A4
s QKQ() Y @\Ds%%%@e(ﬂﬂ\
Susee Heur S Ard BLEORTTHM DISAGREE \S
ShoRE RN sS©,YOR SONE C’{)

AN ETREcTWE Ro C

R T
(§,Ca = Diohcees (@DV 2 QT

Q</ o AU CHDT EXAST

Halting (A;y) is recognizable

While the Halting Problem is not solvable, it is re, recognizable or
semi-decidable.

To see this, consider the following semi-decision procedure. Let P
be an arbitrary procedure and let x be an arbitrary natural number.
Run the procedure P on input x until it stops. If it stops, say “yes.” If
P does not stop, we will provide no answer. This semi-decides the
Halting Problem. Here is a procedural description.

Semi_Decide Halting() {
Read P, x;
P(x);
Print “yes”;

10/28/19 COT 4210 © UCF 292

Enumeration Theorem

» Define
W, ={x e N|o(nxN}
 Theorem: A set B is re iff there exists an n
such that B=W,,.
Proof: Follows from definition of ¢(n,x).
 This gives us a way to enumerate the

recursively enumerable (semi-decidable)
sets.

10/28/19 COT 4210 © UCF 293

Non-re Problems

« There are even “practical” problems that are worse than
unsolvable -- they’ re not even semi-decidable.

« The classic non-re problem is the Uniform Halting
Problem, that is, the problem to decide of an arbitrary
effective procedure P, whether or not P is an algorithm.

« Assume that the set of algorithms (TOTAL) can be
enumerated, and that F accomplishes this. Then

F(x) = Fy

where Fg, F4, F5, ... is a list of indexes of all and only the
algorithms

10/28/19 COT 4210 © UCF 294

The Contradiction

. Define G(x)=Univ (F(X),Xx)+1=0gx(X)=Fdx)+1

- But then G is itself an algorithm. Assume it is the g-th one
F(g)=F;=G
Then, G(g) = Fg(g) +1=G(g) + 1

« Butthen G contradicts its own existence since G would need to be
an algorithm.

» This cannot be used to show that the effective procedures are non-
enumerable, since the above is not a contradiction when G(g) is

undefined. In fact, we already have shown how to enumerate the
(partial) recursive functions.

10/28/19 COT 4210 © UCF 295

The Set TOTAL

* The listing of all algorithms can be viewed
as
[OTAL ={f e N| VX ¢; (X }

« We can also note that
[OTAL={f e N| W= N}, where W: is the
domain of o

e Theorem: TOTAL is not re.
Proof: Shown earlier.

10/28/19 COT 4210 © UCF 296

Insights

Non-re nature of algorithms

« No generative system (e.g., grammar) can produce
descriptions of all and only algorithms

« No parsing system (even one that rejects by
divergence) can accept all and only algorithms

« Of course, if you buy Church’s Theorem, the set of all
procedures can be generated. In fact, we can build an
algorithmic acceptor of such programs.

10/28/19 COT 4210 © UCF 299

Many unbounded ways

« How do you achieve divergence, i.e., what are the
various means of unbounded computation in each of
our models?

« GOTO: Turing Machines and Register Machines

« Minimization: Recursive Functions
— Why not primitive recursion/iteration?

Fixed Point: (Ordered) Factor Replacement Systems

10/28/19 COT 4210 © UCF 300

Non-determinism

e |t sometimes doesn’t matter

— Turing Machines, Finite-State Automata,
Linear Bounded Automata

* |t sometimes helps
— Push Down Automata

* |t sometimes hinders
— Factor Replacement Systems, Petri Nets

10/28/19 COT 4210 © UCF 301

\‘\fow U\aﬂﬂb < (T 10
P‘UPVL\(’%E‘ \PE\‘R(\(\\ETS?

% Detcemwe |E SnE MARKING

Of) EVENTUALSE HRISE VS W

Ex® seace (N

S oW ARBLE) BU U T AKeES =X PONENVIAL

LRCE
QN
Tyme S ACTUALLN 2

e PRIORITY ApTED T TTRARSTIONS,

Do Wevs
ComeuT Ruglo R

fee ComPET® noDELL B

LV DR DERINEG = PeNeT \DW‘F\‘%(OQ\TXES

Reduction Concepts

 Proofs by contradiction are tedious after you’ ve
seen a few. We really would like proofs that
build on known unsolvable problems to show
other, open problems are unsolvable. The
techniqgue commonly used is called reduction. It
starts with some known unsolvable problem and
then shows that this problem is no harder than
some open problem in which we are interested.

10/28/19 COT 4210 © UCF 303

DQ(DB LEM CP?T ECORIES

PECUQS‘V‘E CSOWPTBLEB
lots oF TAnPLES

R © NON Recrse (Uu)““(. BUV geM\wc“CB
U\Pccv »%%\O @(ﬂlﬁﬁ

Srowd R \43 \AeoN ez T oN

Nov-¥e CCPNNO\ syen SE beC\D'E)

Temu= %Q |\ % (Q%CQQFE

?Qcoa LEM CresoRriTS

PECUQSNE’ (Sowprava
lors oF BAmbLES

RE : WNen-Recrswe (Unvee ‘Bu-\&emx\\ec;

Hacr = %%7/%7\ Qg(x\ \Y %

Stowd B \43 \Aean el ZN T oN

Nov-e (C_amo"r even sem

<5 |\ % Q%C@\\k

r—

TTe™L=

\M‘W\O o R@BOC‘HOQ

<
A < B IFE THERE ExSTs

SomE CoMPTABLE frieer Tm &>

JEN ON SB-
WADGE THE CON0OEXNTY
WV must BE HARD
S ORDER. OR, fsand
le A s upgaveBls

naed (o2 €
§ poEs N C
LPANDS CAYE f‘“"‘a\‘
AT LSAST POV TEN W)
Rls COmP\QX\T‘(r

—~ted S0 1S O

Duowne Caverane oF Neweostems

Fleet \EcQueE \ s Wep ucTiont

le— B BE SONE SET OF OWoWN

QON\?LF?)(\T\[
lee A e SoME ST OF VDU 4

Combmxyv ¥
L’ET ,? BE H @WUTP@L? W\~

Aé\m% OR. 3OET Az2S

i T \F

| FetioN (W)

\e &S Qe wo-REC TTHE E
WOT NEC. RE

\ S “w_\zgce)%UT
= A QOoN-RE
@ ON-RE D, 0F OV

—ied D

\
PR,

?@UCT Yo N! Cxonee # 4

Uow HALT £ TOTAL

S % BE AQBITRARY VT NOMBeRs

et

L9« 7 € Rat (FF QY
Dewwg Ty BY
\‘g@?x Cg) :Qg(x\ //\GroRES (MPIT

o,

Nore @ We ¢l LERVE OUT
P> Sust 3 Y

\?g“& %\ =S) // ONERLOA D

Tor. ConVEN (SIAS

ExanpLe 72
\JKP&%QE:RO = 3‘@ \%x £\ = D?g //St(?@

Sttow \'&PrS%ERO 1S VoW - RET,

Cueped ;&a}’x (%\: o & S \Y
ELse X 4 "FxCé\’T
So

ANS2ZERO

25 K7 ¢ & X
Tuos, tastero \& N REC, SWCE
Lt S RRsZeR0
YGotr \3 Wpae Zepo eec 7

Wew \T & AND WE W\Y- SDoOW
—TyRT LA

Swo
> W 2eR
VAN"2 ?R\O?R it
=X -
A
PLE SH
pEDL
WO
-ReC

\ e
v § Be fee

DerNE
©¥x
(—_—
¥\ = i;(x\ —S5C
X

|\

NQD\:%‘
a'\
oveL \FE \VLK'Q
=

(P
(€ 2ek
@

1
s,
R E A
Z,
- %;M%EQO
PO \S \
BN
-

Exanes A4
peuTd =% & | ¥X Sexy=X &
LeT & Be Ay PRETRARY NYTX
DereE
YA 9s

Nows
L e TotAl- 1P 3 SO
\F= A %%CK\ZX

(= S-S5SO

'

RISES
O TAL S TORATY

bl So I DENTIT g NIT &Xen Re

~ [Wwes or Revution

M-\ <

= m
Torwe (AxA ORACLE D
é'&‘

bE‘GQEGS PR QLW - CLASSES

\

A

AN
i
®N€ OL_PQQQ WE e ABOV L

(S C@W\Pge‘rg@?e@& E CH\-\G{-UEST>

R e RE SET=

Ne conPleTe

S s RE-ConbLeT® \ FF

C\\ < o RE
RN 1€V (2 RE TN

Hﬂm (AKX \<o\ \ S RE —COMPLETE

eSS

leT A Bec per RE STT —tHen)
R:\DON\ Q& YoR SoNng MdEX A
»- Q@N\B

Here A= \Wea
YN & Xém@ \@XQ (RN &<, ek
R (Renu N Ko)

A< Ko

K < PSSO Q§~ (o =T

K= {0 | Qe
leT Q/’< BE ARS,

Deene k‘t‘& F’((@\ =509

Ko & ¥ (heromst £ = e
avioosl
RE — COMPLETE

