Halting (A;y) is recognizable

While the Halting Problem is not solvable, it is re, recognizable or
semi-decidable.

To see this, consider the following semi-decision procedure. Let P
be an arbitrary procedure and let x be an arbitrary natural number.
Run the procedure P on input x until it stops. If it stops, say “yes.” If
P does not stop, we will provide no answer. This semi-decides the
Halting Problem. Here is a procedural description.

Semi_Decide Halting() {
Read P, x;
P(x);
Print “yes”;
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Enumeration Theorem

» Define
W, ={x e N|o(nxN}
 Theorem: A set B is re iff there exists an n
such that B=W,,.
Proof: Follows from definition of ¢(n,x).
 This gives us a way to enumerate the

recursively enumerable (semi-decidable)
sets.
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Non-re Problems

« There are even “practical” problems that are worse than
unsolvable -- they’ re not even semi-decidable.

« The classic non-re problem is the Uniform Halting
Problem, that is, the problem to decide of an arbitrary
effective procedure P, whether or not P is an algorithm.

« Assume that the set of algorithms (TOTAL) can be
enumerated, and that F accomplishes this. Then

F(x) = Fy

where Fg, F4, F5, ... is a list of indexes of all and only the
algorithms
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The Contradiction

. Define G(x)=Univ (F(X),Xx)+1=0gx(X)=Fdx)+1

- But then G is itself an algorithm. Assume it is the g-th one
F(g)=F;=G
Then, G(g) = Fg(g) +1=G(g) + 1

« Butthen G contradicts its own existence since G would need to be
an algorithm.

» This cannot be used to show that the effective procedures are non-
enumerable, since the above is not a contradiction when G(g) is

undefined. In fact, we already have shown how to enumerate the
(partial) recursive functions.
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The Set TOTAL

* The listing of all algorithms can be viewed
as
[OTAL ={f e N| VX ¢; (X }

« We can also note that
[OTAL={f e N| W= N}, where W: is the
domain of o

e Theorem: TOTAL is not re.
Proof: Shown earlier.

10/28/19 COT 4210 © UCF 296



Insights



Non-re nature of algorithms

« No generative system (e.g., grammar) can produce
descriptions of all and only algorithms

« No parsing system (even one that rejects by
divergence) can accept all and only algorithms

« Of course, if you buy Church’s Theorem, the set of all
procedures can be generated. In fact, we can build an
algorithmic acceptor of such programs.
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Many unbounded ways

« How do you achieve divergence, i.e., what are the
various means of unbounded computation in each of
our models?

« GOTO: Turing Machines and Register Machines

« Minimization: Recursive Functions
—  Why not primitive recursion/iteration?

Fixed Point: (Ordered) Factor Replacement Systems
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Non-determinism

e |t sometimes doesn’t matter

— Turing Machines, Finite-State Automata,
Linear Bounded Automata

* |t sometimes helps
— Push Down Automata

* |t sometimes hinders
— Factor Replacement Systems, Petri Nets
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Reduction Concepts

 Proofs by contradiction are tedious after you’ ve
seen a few. We really would like proofs that
build on known unsolvable problems to show
other, open problems are unsolvable. The
techniqgue commonly used is called reduction. It
starts with some known unsolvable problem and
then shows that this problem is no harder than
some open problem in which we are interested.
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