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* Instructor: Charles Hughes;
Harris Engineering 247C;
e-mail: charles.e.hughes@knights.ucf.edu
(e-mail is a good way to get me)
Please use Subject: COT4210

 Web Page: http://www.cs.ucf.edu/courses/cot4210/Fall2019

 Meetings: TR 4:30PM - 5:45PM, BA1-119;
29-30 class periods, each 75 minutes long.

Office Hours: TR 2:00PM — 3:30PM in HEC-247C

 TA1: Stephen Powell

e-mail: stephenmpowell@knights.ucf.edu

Please use Subject: COT4210

Office Hours: MW1500-1630 (3:00PM-4:30PM) in HEC-308
« TAZ2: Trevor Bland

e-mail: tbland96@knights.ucf.edu

Please use Subject: COT4210
Office Hours: F1000-1200 (10:00AM-12:00PM) in HEC-308
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http://www.cs.ucf.edu/courses/cot4210/Fall2019

 This and other material linked from web site.

 Text:

— Sipser, Introduction to the Theory of Computation
2nd or 3rd Ed., Course Technologies, 2005/2013.

— Focus on Chapters 1-5,7

« Reference:

— Hopcroft, Motwani and Ullman, Introduction to
Automata Theory, Languages and Computation
3rd Ed., Addison-Wesley, 2006.
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Prerequisites: COT3100 (discrete structure |); COP3503
(undergraduate algorithm design and analysis).

Assignments: Assignments (likely 10 of them) will be graded
but there will also be ungraded practice problems.

Exams: One midterm and a final.
Quizzes: | don’t plan on them, but I'll keep that option open.

Material: | will draw heavily from the text by Sipser (Chapters
1-5 and 7). Some material will also come from Hopcroft. Class
notes and in-class discussions are, however, comprehensive
and cover models, closure properties and undecidable
problems that may not be addressed in either of these texts.
Note, however, that the Notes are often guidelines to topics in
the text, so do not ignore Sipser.
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* Introduce Theory of Computation, including

— Various models of computation

» Finite-State Automata and their relation to regular expressions, regular equations and
regular grammars

« Push Down Automata and their relation to context-free languages
» Techniques for showing languages are NOT in particular language classes
* Closure and non-closure problems

— Limits of computation
« Turing Machines and other equivalent models
» Decision problems; Undecidable decision problems
» The technique of reducibility
« The ubiquity of undecidability (Rice’s Theorem)
— Complexity theory
* Order notation (this should be a review)
» Time complexity, the sets P, NP, NP-Hard, NP-Complete and the question does P=NP?
* Reducibility in context of complexity
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* You will gain a solid understanding of various types of
automata and other computational models and their
relation to formal languages.

* You will have a strong sense of the limits that are
imposed by the very nature of computation, and the
ubiquity of unsolvable problems throughout CS.

* You will understand the notion of computational
complexity and especially of the classes of problems
known as P, NP, NP-Hard and NP-complete.

* You will come away with stronger formal proof skills and
a better appreciation (I hope) of the importance of
discrete mathematics to all aspects of CS.
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« | expect you to visit the course web site regularly
(preferably daily) to see if changes have been made or
material has been added.

« Attendance is preferred, although | do not take roll. | can
say that a class where the culture is to come to class
does better than one where skipping class is the norm.

» | do, however, ask questions in class and give many
hints about the kinds of questions | will ask on exams. It
would be a shame to miss the hints, or to fail to impress
me with your insightful in-class answers.

* You are responsible for all material covered in class,
whether in the text or not.
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* Do Your Own Work
— When you turn in an assignment, you are implicitly telling me
that these are the fruits of your labor. Do not copy anyone else's
homework or let anyone else copy yours. In contrast, working
together to understand lecture material and solutions to
problems not posed as graded assignments is encouraged.

« Late Assignments
— | will accept no late assignments, except under very unusual
conditions, and those exceptions must be arranged with me or
the GTA in advance unless associated with some tragic event.

e Exams

— No communication during exams, except with me or a
designated proctor, will be tolerated. A single offense will lead to

termination of your participation in the class, and the assignment
of a failing grade.
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e Midterm — Tentatively Thursday, October 17

« Withdraw Deadline — Friday, November 1

* Final — Thursday, Dec. 5, 4:.00PM-6:50PM

 Known Days Off: 8/29 (FAMU Game), 11/28
(Thanksgiving)

« Midterm exam date is subject to change with

appropriate notice. Final exam is, of course,
fixed in stone.
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« Mid Term — 150 points
* Final Exam — 200 points
* Assignments — 75 points

* Bonus — better exam (midterm or final) weighed
+75 points (weight change, not free points)

e Total Available: 500

* Grading will be A 2 90%, A- =2 88%,
B+ = 85%, B=80%, B-=78%,
C+275%, C =70%, C-=60%,
D =50%, F <50%
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 When a slide is presenting a problem set, | will
highlight the slide title in Red

 When a topic is not in the text, | will highlight the
slide title in Green

* When a topic is covered either in part or only in
exercises in the text, | will highlight the slide title
in Blue

* Oh, and | will occasionally mess up and get the
color wrong.

11/26/19 COT 4210 © UCF 11



Assignment # 1 Includes
Financial Aid Related Activity

Complete questionnaire (in quizzes category) on Webcourses.

Complete all questions on time for a free five points out of total points
for all assignments.

Complete and submit by one minute before Midnight Friday, 8/30.

11/26/19 COT 4210 © UCF 12



Preliminaries

Mostly from Sipser Chapter O

This is review material and is discussed Iin
http://www.cs.ucf.edu/courses/cot4210/Fall20

19/Notes/COT4210NotesPreliminaries.pdf



http://www.cs.ucf.edu/courses/cot4210/Fall2019/Notes/COT4210NotesPreliminaries.pdf

Sets are unordered collections of distinct objects. The size of a set is

called its cardinality. Sets can have finite, countably infinite or uncountably
infinite cardinalities.

The empty set is denoted, I, and is the set with no members; that is,
@ ={}. The cardinality of @ is O.

Multisets or Bags are unordered collections of objects where we keep
track of repeated elements (usually with a count per element)

The cross (Cartesian) product of two sets A and B is
AxB={(a,b)| ae Aandb e B}. Note: (a,b) is a sequence

While sets have no order, sequences have order. We can talk about the
k-th element of a sequence, but not of a set or multiset. Finite sequences
of length k are often called k-tuples. A 2-tuple is also called a pair.

Subsets of A x B define binary relations Smappings) from A into B. Such
relations, when many-one, can be partial or total functions (every element
of A has a unique mapping to an element of B). Functions mapping to
{0,1} or {false,true} are predicates.

Relations over A x A can be reflexive, symmetric, and/or transitive
(together, these define an equivalence relation that partitions A into
disjoint subsets).
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DEFINITION 1. An alphabet X is a finite, non-empty set
of abstract symbols.

DEFINITION 2. 7 the set of all strings over the
alphabet, S, is given inductively as follows.

11/26/19

Basis: A € X*( the null string is denoted by 2, it is the string of
length 0, that is |A| = 0) [text uses ¢ but | avoid that as hate
saying € € A, it's really confusing when manually written]
Vaex, aex* (the members of S are strings of length 1, |a| = 1)

Induction rule: If x e £*,anda € X, then ax € Z*and x-a € X*
Furthermore, A-x = x-A = X, and |a-x| = |x-a| = 1+ [].

NOTE: “a-x” denotes “a concatenated to x” and is formed by
appending the symbol a to the left end of x. Similarly, x

denotes appending a to the right end of x. In either case if x is
the null string (1), then the resultant string is “a”.

We could have skipped saying Va € X, a € X% as this is covered
by the induction step.

COT 4210 © UCF 15



UNIVERSE OF DISCOURSE
USUALLY STRINGS OR NATURAL NUMBERS

DECISION PROBLEMS

For some element,
S X, is x in S?
Subset of interest, _
. Question: How many
maybe with ordered subsets of Natural

elements Numbers are there?
How many languages are
there over some finite
alphabet?

Example 1: S is set of Primes and x is a natural number; is x in S (is x a prime)?
Example 2: S is an undirected graph (pairs for neighbors); is S 3-colorable?
Example 3: S is a program in C; is S syntactically correct?

Example 4: S is program in C; does S halt on all input?

Example 5: S is a set of strings; is the language S Regular, Context-Free, ... ?



- DEFINITION 3. Let 2 be an alphabet. A language over 2. is a subset, L, of
2*
- Example. Languages over the alphabet 2 = {a, b}.
— @ (the empty set) is a language over X
- * (the universal set) is a language over 2
— {a, bb, aba } (a finite subset of Z*) is a language over 2..
— {ab"a™|n=m2 n, m >0} (infinite subset) is a language over X..
- DEFINITION 4. LetL and M be two languages over 2.. Then the
concatenation of L with M, denoted L-M is the set,
LM={xy|xelLandy e M}

The concatenation of arbitrary strings x and y is defined inductively as

follows.
Basis: When |x| <1 or |y| £ 1, then x-y is defined as in Definition 2.

Inductive rule: when |[x| > 1 and |y| > 1, thenx=x -aforsomea e X and x’ € X%,
where x| = |x|-1. Then x-y = x’-(a-y).

11/26/19 COT 4210 © UCF 17



Let s, t be arbitrary strings over X
—Ss=ajay...a;,]2>20,whereeach a; e X
—t=Dbyb,...b,,k>0,whereeach b, € £
length: |s| =] ; |t| =k

concatenate: = st =st=

dqdo ... aj b1 b2 bkv |St| =j+k

power: s" =ss ... s (n times) Note: s = A
reverse: sR =a a4 ... ay

substring: fors =a; a, ... a;, any a, ap.q ...

where 1<p<qg<j or A

11/26/19 COT 4210 © UCF
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 Letl, M and N be languages over %, then:
- GL=L0O=0
— L=l =L
~ L(MUN)=LMULN and (MUN)-L=MLUN-L

 Concatenation does NOT distribute over intersection.

— LO9={)\} (definition)

— L1 =LL"=L"L, n >0. (definition)

L*=L"uUL2u ... L"... (definition)

L* = LO U L1 U L?2u ... L"... (definition) =L% U L*
(L) =

— (LM)* L L(ML)*

— (L* - M*)* = (L* U M*)* = (L U M)*

— (LPuL"uL?2uU ... L"L* = L*, for all n >0.

11/26/19 COT 4210 © UCF
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UNIVERSE OF LANGUAGES

4 N

Recursive = Decidable

Context-Sensitive

REGULAR
= Right
Linear

\ Non-RE /




. When we discuss languages and classes of languages, we discuss
recognizers and generators

. A recognizer for a specific language is a program or computational model
that differentiates members from non-members of the given language

. A portion of the job of a compiler is to check to see if an input is a legitimate
member of some specific programming language — we refer to this as a
syntactic recognizer

. A generator for a specific language is a program that generates all and only
members of the given language

. In general, it is not individual languages that interest us, but rather classes
of languages that are definable by some specific class of recognizers or
generators

. One type of recognizer is called an automata and there are multiple classes
of automata

. One type of generator is called a grammar and there are multiple classes of
grammars

. Our first journey will be through automata and grammars

11/26/19 COT 4210 © UCF 21



MODELS OF COMPUTATION

AUTOMATA
Recognizers

Turing Machines (DTM = NDTM)

LBAs (DLBAs = NDLBAs)
NPDAs

DPDAs

DFAs =
NDFAs

Of these models, only TMs can do general computation



REWRITING SYSTEMS

GRAMMARS

T Type 0=Phrase-Structured

Type 1=Context-Sensitive

Type 2=Context-Free

Deterministic CFG
LR(k)
Type 3=

Regular =
Right Linear



Regular Languages

Includes and Expands on
Chapter 1 of Sipser



A Finite-State Automaton (FSA) has only one
form of memory, its current state.

* As any automaton has a predetermined finite
number of states, this class of machines is quite
limited, but still very useful.

 There are two classes: Deterministic Finite-State
Automata (DFAs) and Non-Deterministic Finite-
State Automata (NFAs)

« We focus on DFASs for now.

11/26/19 COT 4210 © UCF 25
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L is a finite-state (regular) language over finite alphabet
Each x; is a character in

W = X4 X2 ... X, IS @ string to be tested for membership in L

Z-ﬂﬂ!----ﬂ

do

Arrow above represents read head that starts on left.
Jo € Q (finite state set) is initial state of machine.

Only action at each step is to change state based on
character being read and current state. State change is
determined by a transition function 6: Q X ¥ — Q.
Once state is changed, read head moves right.
Machine stops when head passes last input character.

Machine accepts a string as a member of L if it ends up
in a state from Final State set F € Q.

COT 4210 © UCF
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« A deterministic finite-state automaton (DFA) A is defined
by a 5-tuple
A =(Q,2,0,q,F), where
— Q is a finite set of symbols called the states of A
— 2 is a finite set of symbols called the alphabet of A

— 0 is a function from QX X into Q (6: Q X 2 — Q) called
the transition function of A

— (o€Q is a unique element of Q called the start state

— F is a subset of Q (F € Q) called the final states (can
be empty)

11/26/19 COT 4210 © UCF 27



« Given a DFA, A=(Q,2,0,q¢,F), we can definition the
reflexive transitive closure of 6, 6*:Q X 2* — Q, by
— 0*(q,A) = q where A is the string of length O

» Note that text uses e rather than A as symbol for string of length zero
— 0*(q,ax) = 0*(d(g,a),x), whereae€e 2 and x € 2*
— Note that this means
0*(q,a) = 6(q,a), where a € 2 as a = aki
« We also define the transitive closure of o, d*, by
— 0*(q,w) = 0*(q,w) when |w|>0 or, equivalently, w € 2*
« The function &* describes every step of computation by
the automaton starting in some state until it runs out of
characters to read

11/26/19 COT 4210 © UCF
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« Given a DFA, A=(Q,2,0,q¢,F), we can define the
language accepted by A as those strings that cause it to
end up in a final state once it has consumed the entire
string

 Formally, the language accepted by A is

— {w]d*qo,w) €F}
« We generally refer to this language as L(A)

« We define the notion of a Regular Language by saying
that a language is Regular if and only if it is accepted
(recognized) by some DFA

11/26/19 COT 4210 © UCF 29



* A finite-state automaton can be described by a
state diagram, where
— Each state is represented by a node labelled with that

state, e.q., @

— The start state has an arc entering it with no source,

e.g., @

— Each transition d(qg,a) = s is represented by a directed
arc from node q to node s that is labelled with the

letter a, e.qg.,

— Each final state has an extra circle around its node,

..

11/26/19 COT 4210 © UCF 30



A = ({E,Q}, {0,1}, 5, E, {O}), where ¢ is defined by above diagram.
L(A) ={w | wis a binary string of odd parity }

00 01,10 >
B B E
a G 11 oo 11 °
01,10
A’ = ({C,NC,X}, {00,01,10,11}, &’, C, {NC}), where &’ is defined by above

diagram.
L(A") ={w | wis a pair of binary strings where the bottom string is the 2’s

complement of the top one, both read least (Isb) to most significant bit (msb) }

11/26/19 COT 4210 © UCF 31



Sample DFA # 3

\ o
»=({0,1,2,3,4}, {0,1}, §, 0, {2,3}), where §” is defined by above
diagram. L(A4”) ={w | wis a binary string that, read left to right (msb to

Isb), when interpreted as a decimal number divided by 5, has a
remainder of 2 or 3}
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ﬂ)”

L
OO OO
|

A” = ({N,E,W,S}, {R,L}, 8, N, {N}), where 5’ is defined by above diagram.

L(A”) ={w | wis aset of commands passed to a sentinel that starts facing

North and changes directions R(ight)/clockwise or L(eft)/counterclockwise
based on the corresponding input character. w must eventually lead the
sentinel back to facing North }

11/26/19 © UCF EECS
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Assignment # 2

Write a deterministic finite-state automaton (DFA) that describes the
operations of a sentinel that accepts only the commands R and L. The
sentinel can look North, East, South or West and always starts looking
North. R causes the sentinel to turn clockwise 90 degrees. L causes
the sentinel to turn counter-clockwise 90 degrees. A sequence of
actions is acceptable if the sentinel has looked, in addition to North, to
East, South and West, in any order that is possible.

Hint: States should look like <DirectionsVisited,CurrentDirection>. For
example, the DFA starts in <{N},N>. Let's say it received commands
RLL, then it would be in state <{N,E,W},W>. If it gets another L
command, then it enters a final state and stays there no matter what
additional commands are received. This can easily be done in 15
states, but it can be done in fewer as well. No optimization is required,
except to not exceed 15 states.

Due Tuesday, Sept. 10 at 11:59PM (use Webcourses to turn in)
11/26/19 COT 4210 © UCF 34



A finite-state automaton can be described by a state
transition table with |Q| rows and |Z| columns

« Rows are labelled with state names and columns with
iInput letters

« The start state has some indicator, e.g., a greater than

sign (>q) and each final state has some indicator, e.g.,
an underscore (f)

« The entry in row q, column a, contains d(q,a)

* In general we will use state diagrams, but transition
tables are useful in some cases (state minimization)
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0 1
j> 0%5 0%5 1% 5
1%5 2%5 3%5
2%5 4% 5 0%5
Accept State 3%5 1% 5 2%5
4% 5 3%5 4% 5

A" = ({0%5,1%5,2%5,3%5,4%5}, {0,1}, 5°, 0, {3%5}), where 5’ is defined
by above diagram.

L(A”) ={w | wis a binary string of length at least 1 being read left to right
(msb to Isb) that, when interpreted as a decimal number divided by 5, has a
remainder of 3 }

Really, this is better done as a state diagram similar to what you saw earlier
but have put this up so you can see the pattern.
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Aa
A0
A@
a0
a@
0@
Aal
Aa@
A0@
al@
Aa0@

A-Z
A
A

Aa
A0
A@
Aa
A0
A@
Aal
Aa@
A0@
Aal
Aa@
A0@

Aa0@
Aa0@

a-z 0-9
a 0
Aa A0
a al
al 0
a@ 0@
Aa Aal
Aal A0
Aa@ A0@
al al
a@ a0@
a0@ 0@
Aal Aal
Aa@ Aa0@
Aa0@ A0@
a0@ a0@
Aa0@ Aa0@

@#$%"&
@
A@
a@
0@
@
Aa@
A0@
A@
a0@
a@
0@
Aa0@
Aa@
A0@

a0@
Aa0@

This checks a string to see if it's a legal password. In our case, a legal
password must contain at least one of each of the following: lower case letter,
upper case letter, number, and special character from the following set
{{@#%%"&}. No other characters are allowed

11/26/19
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FSAs and Applications

* A synchronous sequential circuit has

Binary input lines (input admitted at clock tick)
Binary output lines (simple case is one line)

« 1 accepts; 0 rejects input
Internal flip flops (memory) that define state

Simple combinatorial circuits (and, or, not) that combine current state
and input to alter state

Simple combinatorial circuits (and, or, not) that use state to determine
output

« Think about FSA to recognize the string PAPAPAT
appearing somewhere in a corpus of text, say with a
substring PAPAPAPATRICK

« Comments about GREP and Lexical Analysis

11/26/19
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Regular languages (those recognized by DFAs) are closed
under complement, union, intersection, difference and
exclusive or (@) and many other set operations

Let A; = (Q4,2,04,90,F1), Ay, = (Q,2,0,,55,F5,) be arbitrary DFAs
2*-L(A,)is recognized by A.* = (Q,,X,0,,90,Q4-F)

Define A; = (Q4 X Q,,2,05,<q,S0>,F3) where

05(<q,s>,a)= <04(q,a),0,(s,a)>, qeQ4, se€Q,, ac2

— L(A)UL(A,) is recognized when F;=(F; X Q,)U(Q X F,)

— L(A{)NL(A,) is recognized when F5;=F, X F,

— L(A,) - L(A,) is recognized when F;=F; X (Q,-F,)

— L(A) & L(A,) is recognized when F;=F, X (Q,-F,)u(Q,-F,) X F,
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+ LetA=(Q,2,0,90,F)
« Simply create new automaton
AC = (Q,Z,0,q,,Q-F)
* L(A®)={w|d*(gow) € Q-F } =
{w|0%(qow) &F}=
{w|weL(A)}
 When we discuss them shortly, imagine trying to do this
In the context of regular expressions

« Choosing the right representation can make a very big
difference in how easy or hard it is to prove some
property is true
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Parallelizing DFAs

Regular sets can be shown closed under many binary operations
using the notion of parallel machine simulation

Let A, = (Q4,2,04,90,F¢) and A, = (Q,,2,0,,sq,F,) where
QNQ, =9
B = (Q; X Qy,,%,03,<q0,S0> F3) Where
03(<q,s>,a) = < 04(q,a), Oy(s,a) >
Unionis F;=F,xQ, U Q; XF,
Intersectionis F; = F, XF,
— Can do by combining union and complement
Difference is F; = F; X (Q, — F»)
— Can do by combining intersection and complement
Exclusive Or is F;=F; X (Q,-F,)u(Q+-F1) X F,

11/26/19 COT 4210 © UCF



* A non-deterministic finite-state automaton (NFA) A is defined by a 5-tuple
A =(Q,2,0,q0,F), where

11/26/19

Q is a finite set of symbols called the states of A

2 is a finite set of symbols called the alphabet of A

0 is a function from Q X % into P(Q) = 29 ; Note: .= (ZU{\})

(0: QX% Z,— P(Q)) called the transition function of A; by definition q €
6(q,2)

Jo€Q is a unique element of Q called the start state

F is a subset of Q (F € Q) called the final states

Note that a state/input (called a discriminant) can lead nowhere new, one place
or many places in an NFA; moreover, an NFA can jump between states even
without reading any input symbol

For simplicity, we often extend the definition of 6: QX %, to a variant that
handles sets of states, where &: P(Q) X 2. is defined as
0(S,a) = Uqes 0(q,a), where a € 2, — if S=@, Uyes 0(q,a) =0

COT 4210 © UCF 42



« Given an NFA, A =(Q,2,0,9,,F), we can define the
reflexive transitive closure of 6, 8*:P(Q) X 2* — P(Q), by
— A-Closure(S) ={t|te d*(S,1)}, S € P(Q) — extended &
— 0*(S,\) = A-Closure(S)
— 0*(S,ax) = 0*(A-Closure(d(S,a)),x), whereae€e 2 and x € 2*

* Note that 8*(S,ax) = Uges Uper-closure(s(q.a)) O (P, X), where a € 2 and x € 2*

« We also define the transitive closure of o, d*, by
— O*(S,w) = 0*(S,w) when |w|>0 or, equivalently, w € 2*

« The function &* describes every “possible” step of
computation by the non-deterministic automaton starting
in some state until it runs out of characters to read
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« Given an NFA, A =(Q,2,0,9,,F), we can define the
language accepted by A as those strings that allow it to
end up in a final state once it has consumed the entire
string — here we just mean that there is some accepting
path

 Formally, the language accepted by A is
— {w | (6*(A-Closure({qo}),w) N F)# QD }

* Notice that we accept if there is any set of choices of
transitions that lead to a final state

11/26/19 COT 4210 © UCF
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* A non-deterministic finite-state automaton can
be described by a finite-state diagram, except
— We now can have transitions labelled with A

— The same letter can appear on multiple arcs from a
state q to multiple distinct destination states
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» Clearly every DFA is an NFA except that
0(q,a) = s becomes 0(q,a) = {s}, so any
language accepted by a DFA can be
accepted by an NFA.

* The challenge is to show every language
accepted by an NFA is accepted by an
equivalent DFA. That s, if Ais an NFA,
then we can construct a DFA A’, such that
L(A") =L(A).
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 LetA=(Q,2,0,q0,F) be an arbitrary NFA
« Let S be an arbitrary subset of Q.

— Construct the sequence seq(S) to be a sequence that contains
all elements of S in lexicographical order, using angle brackets
to . Thatis, if S={g1, 93, g2} then seq(S)=<q1,92,93>. If S=J
then seq(S)=<>

* Qur goal is to create a DFA, A’, whose state set contains

seq(S), whenever there is some w such that S=0*(qy,w)

« To make our life easier, we will act as if the states of A’
are sets, knowing that we really are talking about

corresponding sequences
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» Define the A-Closure of a state g as the set of states one can arrive
at from q, without reading any additional input.
 Formally A-Closure(q) ={t|t e d*(q,A) }

« We can extend this to S € P(Q) by
A-Closure(S)={t|te d*(q,A),ge S} ={t|t e r-Closure(q),q € S}

State | A | B | C | D | E

-closure ‘ (A} ‘ (B,C} ‘ (C} ‘ (D, E} ‘ (E}
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DFA from NFA

OV @

49
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 LetA=(Q,2,0,q0,F) be an arbitrary NFA

* In an abstract sense,
A’ = (<P(Q)>,2,0’, <A-Closure({qp})>, F'),
where P(Q) is the power set of Q, but we really don’t
need so many states (2!9l) and we can iteratively
determine those needed by starting at A-Closure({q,})
and keeping only states reachable from here

* Define 0'(<S>,a) = <A-Closure(6(S,a))> =
<Uqes A-Closure(d(q,a))>, where a€z, S € P(Q)

« P={<S>e<P(Q)>|(SNF)#d}
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« Showing that every DFA can be simulated by an NFA
that accepts the same language and every NFA can be
simulated by a DFA that accepts the same language
proves the following

« Alanguage is Regular if and only if it is accepted
(recognized) by some NFA

« We now have two equivalent classes of recognizers for
Regular Languages
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Simple Exercise:
Convert from NFA to DFA

1 1
0 1

N /\ socs

1 0

(@)
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Regular Expressions

Regular Sets



Primitive:

- O denotes {}

— A denotes {A}

— a where a is in 2 denotes {a}
Closure:

— If R and S are regular expressions thensoare R - S, R+ S and
R*, where

* R-SdenotesRS={xy|xisinRandyisinS}
* R+SdenotesRuUS ={x|xisinRorxisinS}
* R* denotes R*

Parentheses are used as needed
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Consider distinguishing variable names from keywords
like

— IF return(IFSY);
— INT return(INT);
— [a-zA-Z]([a-zA-Z0-9_])* return(IDENT);

* Equivalent to a+b+...+z, etc.

This really screams for non-determinism
— With added constraints of finding longest/first match

Non-deterministic automata typically have fewer states

However, non-deterministic FSA (NFA) interpretation is
not as fast as deterministic
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* Show every regular expression denotes a
language recognized by a finite-state
automaton (can do deterministic or non-
deterministic)

* Show every Finite-State Automata
recognizes a language denoted by a
regular expression
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e Primitive:
- O denotes {}

Y denotes {A}
— a where a is in Z denotes {a}

* Closure: (Assume that R’s and S’s states do not overlap)

- R*S start with machine for R, add A transitions from
every final state of R’s recognizer to start state of S,
making final state of S final states of new machine

— R+S create new start state and add A transitions from new
state to start states of each of R and S, making union
of R’s and S’s final states the new final states

— R* add A transitions from each final state of R back to its start
state, keeping original start and final states (gets R*) — FIX?
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Every Regular Language Is a
Regular Set Using R;

This is a challenge that can be addressed in multiple ways but
| like to start with the Rijk approach. Here's how it works.

Let A =(Q,2,0,q4,F) be a DFA, where Q ={q4,95, ... , qn}

Rijk ={w | 8*(q;,w) = q;, and no intermediate state visited
between q; and qg;, while reading w, has index > k

Basis: k=0, Rij0 ={a|d(qg,a) = q; } sets are either @, A, or an
element of 2 or A + element of 2, and so are regular sets
Inductive hypothesis: Assume R;™ are regular sets for
O0<m=<Kk

Inductive step: k+1, Rijk+1 = (Rijk + Rier® * (Risis® )" - Rk+1jk)
L(A) = +ier Ryf"
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Convert to RE

0 1 1 1

@€ @ »

0 0, 1
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0 1

—GS_ @Y e

0 0, 1
* RyO%=2A R20=0 Ri3%= ¢
« Ry0=0 Ry0= A + 1 Ry39=0 + 1
* R3%=9¢ R320= 1 Ra30= A + 1
« Ry'=A Rip'=0 Riz'=¢
« Ry'=0 Ryy!=A +1+ 00 Ry31=0 + 1
* R3y'=¢ Rap'=1 Rasl=A + 1
« Ry2= 1 +0(1400)0  Ry2= 0(1+00)* Ry52= 0(1+00)*(0+1)
+ Rg2= (1+00)*0 Roz?= (1+00)* Roa?= (1+00)*(0+1)
+ Rg2= 1(1+00)*0 Ra,2= 1(1+00)* Ras2= A+1+1(1+00)*(0+1)

e L=R 3=
0(1+00)* + O(1+00)*(0+1) (1+1(1+00)*(0+1))* 1(1+00)*
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This is similar to generalized automata approach but with fewer arcs
than text. It actually gets some of its motivation from R;* approach
as well

Add a new start state and add a A—transition to existing start state

Add a new final state g; and insert A—transitions from all existing final
states to the new one; make the old final states non-final

Leaving the start and final states, successively pick states to remove

For each state to be removed, change the arcs of every pair of
externally entering and exiting arcs to reflect the regular expression
that describes all strings that could result is such a double transition;
be sure to account for loops in the state being removed. Also, or (+)
together expressions that have the same start and end nodes

When have just start and final, the regular expression that leads
from start to final describes the associated regular set
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Let B be the node to be removed

Let e1 be the regular expression on the arc from some node A to some
node B (A#B); e2 be the expression from B back to B (or A if there is no
recursive arc); e3 be the expression on the arc from B to some other node
C (C #B but C could be A); e4 be the expression from Ato C

Erase the existing arcs from A to B and A to C, adding a new arc from A to

C labelled with the expression
ed4 + el e2*e3

Do this for all nodes that have edges to B until B has no more entering
edges; at this point remove B and any edges it has to other nodes and itself

lterate until all but the start and final nodes remain

The expression from start to final describes regular set that is equivalent to
regular language accepted by original automaton

Note: Your choices of the order of removal make a big difference in how
hard or easy this is

11/26/19 COT 4210 © UCF 62



Use Ripping; Rip g3

1

D@ W @



Use Rlpplng, Rip q1

1+(0+1)1*

11/26/19

1+(0+1)1*+00
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Use Ripping; Rip g2

1+(0+1)1*+00

0 (1+(0+1)1+*+00)*
o[0]

L = 0 (1+(0+1)1++00)*

11/26/19 COT 4210 © UCF
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Regular Equations (Arden)

Assume that R, Q and P are sets such that P

does not contain the string of length zero, and R
Is defined by

e R=Q+RP
« We wish to show that
e R = QP*

 This can be found under “Arden’s Theorem”
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Show QP* is a Solution

« We first show that QP* is contained in R. By
definition, R = Q + RP.

« To see if QP* is a solution, we insert it as the

value of R in Q + RP and see if the equation
balances

. R=Q +QP*P = Q(A+P*P) = QP*

* Hence QP* is a solution, but not necessarily the
only solution.
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Uniqueness of Solution

« To prove uniqueness, we show that R is contained in QP*.
« By definition, R = Q+RP = Q+(Q+RP)P

« = Q+QP+RP? = Q+QP+(Q+RP)P?

« = Q+QP+QP%+RP?

« = Q(A+P+P%+ . +P))+RP™1, for all i>=0
 Choose any w in R, where |W| = k. Then, from above,
« R=QA+P+P2+ ... +Pk)+RP**

* but, since P does not contain the string of length zero, w is not in
RP**1, Butthen wis in

« Q(AMP+P2+ ... +PK) and hence w is in QP*.
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Example

We use the above to solve simultaneous regular equations.
For example, we can associate regular expressions with
finite-state automata as follows

Hence,

ForA, Q=7L+B1,P O A=)\+B1+AD
A = QP* = (\.+B1)0*
= B10* + O* E=Al+ED

B=B10*1 + BO + 0*1
For B, Q=0*1;, P= B10*1 + BO = B(10*1 + 0)

and therefore
B=0*1(10"1 + 0)*
Note: This technique fails if there are lambda transitions.
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Usmg Regular Equatlons

"

A=) + B0

B=A0+C1+Bi1

C = B(0+1) + C1; C = B(0+1)1*

B =0 + B0O + B(0+1)1* + B1

B =0+ B (00+(0+1) 1* + 1); B = 0(00 +(0+1)1* + 1)* = 0 (1+(0+1)1*+00)*

This is same form as with state ripping. It won'’t always be so.
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Practice NFAs

* Write NFAs for each of the following
— (111 +000 )*
— (0+1)* 101 (0+1)*
— (1(0+1)70) + (0 (0+1)* 1)
» Convert each NFA you just created to an
equivalent DFA.
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DFAs to REs

* For each of the DFAs you created for the
previous page, use ripping of states and
then regular equations to compute the
associated regular expression. Note: You
obviously ought to get expressions that
are equivalent to the initial expressions.
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Assignment # 3

1. Write a deterministic finite-state automaton (DFA) that accepts strings over
{0,1,2}. Each string represents a base 3 number read most significant to
least significant digit. Accept those representing a number in base 10 that
has a remainder of 1 or 3, when divided by 5. Thus, 1, 20, 102, 121 are in
(each is 1 mod 5), and 10, 22, 111, 200 are in (each is 3 mod 5).

2. Take the two DFAs that | presented on binary strings that are Odd Parity (2
state DFA) and the one that represents decimal numbers with remainders
of 2 and 3, when divided by 5, and create the cross-product machine that
recognizes all strings that have the intersection of these properties.

3. Use the standard conversion technique (subsets of states) to convert the
NFA below to an equivalent DFA. Do not include unreachable states.

Due: Tuesday, Sept. 17, 11:59PM (use Webcourses to turn in)
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State Minimization

Minimum State DFAs



State Minimization

Text makes it an assignment on Page 299 in Edition 2.
This is too important to defer, IMHO.

First step is to remove any state that is unreachable from the start
state; a depth first search rooted at start state will identify all
reachable states

One seeks to merge compatible states — states g and s are
compatible if, for all strings x, 8*(q,x) and d&*(s,x) are either both an
accepting or both rejecting states

One approach is to discover incompatible states — states q and s are
incompatible if there exists a string x such that one of 6*(q,x) and
0*(s,x) is an accepting state and the other is not

There are many ways to approach this but my favorite is to do
incompatible states via an n by n lower triangular matrix
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Sample Minimization

« This uses a transition
table

« Just an X denotes
Immediately incompatible

« Pairs are dependencies
for compatibility

« If adependentis
incompatible, so are pairs
that depend on it

« When done, any not x--ed
out are compatible

 Here, new states are
<1,3>, <2,4,5>, <6>;
<1,3> is start and not
accept; others are accept

«  Write new diagram
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Closure Properties

Regular Languages



* |tis easier to do this with regular sets than with DFAs
« Let E be some arbitrary expression; ER is formed by
— Primitives: @R=@ NR=A aR=a
— Closure:
° (A . B)R= (BR . AR)
« (A+B)R=(AR+ BR)
* (A")R = (AR)
« Challenge: How would you do this with FSA models?

— Start with DFA; change all final to start states; change start
to a final state; and reverse edges

— Note that this creates multiple start states; can create a

new start state with A-transitions to multiple starts
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Substitution

A substitution is a function, f, from each
member, a, of an alphabet, 2, to a language L,

* Regqular languages are closed under substitution
of regular languages (i.e., each L, is regular)

« Easy to prove by replacing each member of 2 in
a regular expression for a language L with
regular expression for L,

A homomorphism is a substitution where each
L, Is a single string
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Quotient with Regular Sets

Quotient of two languages B and C, denoted B/C, is defined as
B/C = {x | 3yeC where xyeB}

Let B be recognized by DFA

Ag = (Qg,2,05,915,Fg) and C by

Ac = (Q¢,2,0¢,91c,Fc)

Define the recognizer for B/C by

Agic = (QgUQg X Q¢,2,05/c,918, Fs X F¢)

Og/c(q,a) = {0g(q,a)} a€ex,qeQg

Og/c(q,A) = {<q,94c>} qeEQg

Og/c(<q,p>,1) = {<0g(q,a),0¢(p,a)>} a€Z,qeQg,PEQC

The basic idea is that we simulate B and then randomly decide it
has seen x and continue by looking for y, simulating B continuing
after x but with C starting from scratch
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Quotient Again

- Assume some class of languages, C, is closed
under concatenation, intersection with regular
and substitution of members of €, show C is
closed under Quotient with Regular

 L/IR={x]|3yeR where xyeL }
— Define 2’ ={a’ | ae2 }

— Leth(a)=a; h(a’) = A where ae2
— Letg(a)=a’ where aex
— Let f(a) = {a,a’} where ae2

—L/IR=h(f(L)N (Z* - g(R)))
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Applying Meta Approach

INIT(L) = { x |3ye2* where xyeL }

— INIT(L) =h(f(L) N (2* = g(Z¥) ) )

— Also INIT(L) =L/ £*

LAST(L) ={y |3xeX” where xy€eL }

— LAST(L)=h(f(L) N (g(ZX*) = 2" ))

MID(L) = { vy |3x,ze2* where xyzeL }

* MID(L) =h(f(L) N (g(2*) - 27 - g(2%) ) )
EXTERIOR(L) = { xz |3ye2* where xyzeL }
— EXTERIOR(L) = h( f(L) N ( =* = g(Z*) * =*))
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« The key in proving closure is to always try to identify the
“best” equivalent formal model for regular sets when
trying to prove a particular property

* For example, how could you even conceive of proving

closure under intersection and complement in regular
expression notations?

 Note how much easier quotient is when have closure
under concatenation, and substitution and intersection
with regular languages than showing in FSA notation

11/26/19 COT 4210 © UCF 83



Reachable and Reaching

« Reachablefrom(q) ={p | 3w > &(q,w)=p }

— Just do depth first search from q, marking all
reachable states. Works for NFA as well.

« Reachingto(q) ={p | 3w 2 d(p,w)=q }

— Do depth first from g, going backwards on
transitions, marking all reaching states. Works
for NFA as well.
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Min and Max

« Min(L) = {w | weL and no proper prefix of wisinL } =
{w | welL and if w=xy, xeZ*, ye2* then x¢L}
« Max(L) ={w | welL and w is not the proper prefix of any word in L } =
{w|weL and if ye2* then wy¢L }
 Examples:
— Min(0(0+1)*) = {0}
— Max(0(0+1)*) = {}
— Min(01 + 0 + 10) = {0,10}
— Max(01 + 0 + 10) = {01,10}
— Min({abick | i <k or j < k}) = {albick | | i,j 20, k = min(i, j)}
— Max({abick | i < k orj < k}) = {} because k has no bound
— Min({abick |i=k orj=k}) = {A}
— Max({albick | i 2 k or j 2 k}) = {albick | | i,j 20, k = max(i, j)}
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Regular Closed under Min

« Assume L is regular then Min(L) is regular

« LetlL=L(A), where A =(Q,2,0,q,,F) is a DFA with no
state unreachable from qq

« Define A, = (Qu{dead},2,0,.,90,F), where for ae
Omin(0,@) = 0(q,a), if g€Q-F; din(q,a) = dead, if q€F;
din(dead,a) = dead

The reasoning is that the machine A, accepts only elements in L that are not
extensions of shorter strings in L. By making it so transitions from all final
states in A, go to the new “dead” state, we guarantee that extensions of
accepted strings will not be accepted by this new automaton.

Therefore, Regular Languages are closed under Min.
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Regular Closed under Max

* Assume L is regular then Max(L) is regular

 LetlL=L(A), where A =(Q,2,0,q,,F) is a DFA with no state
unreachable from q,

* Define A, .« = (Q,2,0,90,Fmax), Where
Frax= { f | f€F and Reachablefrom*(f)NF=® }
where Reachablefrom*(q) ={p | 3w > |w|>0 and &(q,w) = p }

The reasoning is that the machine A5 accepts only elements in L that cannot be
extended. If there is a non-empty string that leads from some final state f to any final
state, including f, then f cannot be final in A,5«. All other final states can be retained.
The inductive definition of Reachablefrom™ is:
1. Reachablefrom™(q) contains { s | there exists an element of £, a, such that §(q,a) = s }
2. If s is in Reachablefrom™ (q) then Reachablefrom™ (q) contains

{ 1| there exists an element of £, a, such that §(s,a) =t}
3. No other states are in Reachablefrom™(q)

Therefore, Regular Languages are closed under Max.

11/26/19 COT 4210 © UCF 87



Pumping Lemma for
Regular Languages

What is not a Regular Language



- LetA=(Q,%,0,q4,F) be a DFA, where Q ={q;,qy, -.. , A}

« The “pigeon-hole principle” tells us that whenever we visit
N+1 or more states, we must visit at least one state more than
once (loop)

« Any string, w, of length N or greater leads to us making N
transitions after visiting the start state, and so we visit at least
one state more than once when reading w
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 Theorem: Let L be regular then there
exists an N>0 such that, if w € L and
lw| =2 N, then w can be written in the form
xyz, where |xy| < N, |y|>0, and for all i20,
Xy'z e L

* This means that interesting regular
languages (infinite ones) have a very
simple self-embedding property that
occurs early in long strings
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If L is regular then it is recognized by some DFA, A=(Q,X,5,q0,F). Let |Q] =N
states. For any string w, such that |w| = N, A must make N+1 state visits to
consume its first N characters, followed by |w|-N more state visits.

In its first N+1 state visits, A must enter at least one state two or more times.

Let w = vq...Vj...Vk...Vy, Where m =|w/|, and 8(qo,V1...Vj)=5(do,V1...Vk), K > ],
and let this state represent the first one repeated while A consumes w.

Define X = v4...V}, ¥ = Vis1...Vi, @nd Z = Vi4q...Vy. Clearly w=xyz. Moreover,
since k > |, ly| > 0, and since k = N, |xy| < N.

Since A is deterministic, 6(qo,xy)=6(qo,Xxy'), for all i = 0.

Thus, if w € L, 8(qg,xyz) € F, and so 6(qo,xy'z) € F, forall i = 0.
Consequently, if w € L, |w|=N, then w can be written in the form xyz, where
IXy] <N, |y| > 0, and for all i 2 0, xy'z € L.
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Lemma’s Adversarial Process

« Assume L ={a"b" | n>0 } is regular
« P.L.:ProvidesN>0
— We CANNOT choose N; that’s the P.L.’s job

e Ourturn: Choose aNbN ¢ L
— We get to select a string in L

« P.L.: aNbN = xyz, where |xy]| <N, |y| >0, and foralli=0, xy'z e L
— We CANNOT choose split, but P.L. is constrained by N
 Qurturn: Choose i = 0.
— We have the power here
« P.L:aN-MDbN e L; just a consequence of P.L.
« Our turn: aNVIbN ¢ L; just a consequence of L’s structure
« CONTRADICTION, so L is NOT regular
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« L={xwx]|x,we{a,b}+}:

« Assume that L is Regular.

« PL: LetN>0 be given by the Pumping Lemma.
 YOU: Let s be a string, s € L, such that s = aNbaaNb

« PL: Sinces €Ll and |s| =N, s can be split into 3 pieces, s = xyz, such that
IXy|<Nand|y|>0andVvVi=0xyzel

« YOU: Choosei=2

« PL: xy2z=xyyzel

« Thus, aN+*WbaaNb would be in L, but this is not so since N+|y| # N
 We have arrived at a contradiction.

« Therefore L is not Regular.

11/26/19 COT 4210 © UCF 93



L = {aFib(k) | k>0} :

Assume that L is regular

Let N be the positive integer given by the Pumping Lemma
Let s be a string s = aFibN+3)e |

Since s € L and |s| 2 N (Fib(N+3)>N in all cases; actually Fib(N+2)>N as
well), s is split by PL into xyz, where [xy| <N and |y| > 0 and for all i =2 0,
Xy'z e L

We choose i = 2; by PL: xy2z = xyyze L

Thus, aFib(N+3)*lyl would be € L. This means that there is a Fibonacci number
between Fib(N+3) and Fib(N+3)+N, but the smallest Fibonacci greater than
Fib(N+3) is Fib(N+3)+Fib(N+2) and Fib(N+2)>N

This is a contradiction; therefore L is not regular N

Note: Using values less than N+3 could be dangerous because N could be
1 and both Fib(2) and Fib(3) are within N (1) of Fib(1).
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* Use the Pumping Lemma to show each of

the following is not regular

11/26/19

{0m12" | m<n}
{wwR |w e {a,b}*}
{1"”|n>0)
{ww|w e {a,b}"}
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Assignment # 4.1

1. Convert the DFA below to a regular expression, first by using
either the GNFA (or state ripping) or the R;* approach, and then
by using regular equations. You must show all steps in each part
of this solution.

Due: Tuesday, Sept. 24, 11:59PM (Use Webcourses to turn in)
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Assignment # 4.2

2. Minimize the number of states in the following DFA, showing the
determination of incompatible states (table on right).

a|lb|c
>1 | 2 3 6 2
514 4 3
3|1 11]4]|5 4
4 | 6| 3|5 5
5 5 2 4 6
6 | 2|4 |1 >1 2 3 4 5

Construct and write down your new, equivalent automaton!!
Due: Tuesday, Sept. 24, 11:59PM (use Webcourses to turn in)
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State Minimization

Minimum State DFAs
Myhill-Nerode Theorem



Myhill-Nerode Theorem

The following are equivalent:
1. L is accepted by some DFA

2. L is the union of some of the classes of a right invariant
equivalence relation, R, of finite index.

3. The specific right invariance equivalence relation
R, where xR, yiff Vz[xz e Liffyz e L]
has finite index

Definition. R is a right invariant equivalence relation iff R is
an equivalence relation and Vz [ x Ry implies xz Ryz ].

Note: This is only meaningful for relations over strings.
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Myhill-Nerode 1 = 2

1. Assume L is accepted by some DFA, A =(Q,2,0,94,F)

2. Define Ry by x Ry v iff %(qg4,X) = 8%(q4,Y). First, Ry is
defined by equality and so is obviously an equivalence
relation (Clearly if *(q4,x) = 8*(q4,y) then ¥z 0*(q4,Xz) =
0*(q4,yz) because A is deterministic. Moreover if Vz
6*(q1,XZ) = 6*(q1,y2) then 6*(q1,X) = 6*(q1’y)’ jUSt by
letting z = A. Putting it together x Ry y L iff Vz xz R, yz.
Thus, R, is right invariant; its index is |Q| which is finite;
and L(A) = UsxeelX]ra, Where [X]g, refers to the
equivalence class containing the string x.
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Myhill-Nerode 2 = 3

2. Assume L is the union of some of the classes of a right
invariant equivalence relation, R, of finite index.

3. SincexRyiff VZz[xzRyz], Risrightinvariantand L is
the union of some of the equivalence classes, then
XRy=>Vz[xzelLiffyzelL]=>xR_Y.

This means that the index of R, is less than or equal to
that of R and so is finite. Note than the index of R, is
then less than or equal to that of any other right

invariant equivalence relation, R, of finite index that
defines L.
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Myhill-Nerode 3 = 1

3. Assume the specific right invariance equivalence
relation R, where x R yiff Vz[xz e Liffyz e L]
has finite index

1. Define the automaton A = (Q,2,0,94,F) by
Q={[xg |x€2"}
O([x]r.,a@) = [xa]r,

q1 = [A]
F={[Xlr | x€L}

Note: This is the minimum state automaton and all
others are either equivalent or have redundant
indistinguishable states
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Use of Myhill-Nerode

L ={a"b" | n>0 } is NOT regular.
« Assume otherwise.

* M-N says that the specific r.i. equiv. relation R, has finite
index, where x R y iff Vz[xz e Liffyz e L].

« Consider the equivalence classes [a'b] and [alb], where
1,)>0 and | # .

« abb'e L but abb*! ¢ L and so [ab] is not related to
[alb] under R, and thus [ab] # [alb].

« This means that R, has infinite index.

« Therefore L is not regular.
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xwX Iis not Regular (MN)

« L={xax]|xe{a,b}+}:

« We consider the right invariant equivalence class [alb],
1>0.

 |t's clear that albaa'b is in the language, but akbaa'b is
not when k <.

« This shows that there is a separate equivalence class,
[aib], induced by R, for each i>0. Thus, the index of R, is
infinite and Myhill-Nerode states that L cannot be

Regqular.
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aFib(k js not Regular (MN)

« L ={afibk| k>0} :

* We consider the collection of right invariant equivalence
classes [aFb0)], j > 2.

 |t's clear that aFtl)aFib(+1) js in the language, but
afibkgFib(+1) ijs not when k>2 and k#j and k#j+2

« This shows that there is a separate equivalence class
[aFtl)] induced by R, for each j > 2.

« Thus, the index of R, is infinite and Myhill-Nerode states
that L cannot be Regular.
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Myhill-Nerode and
Minimization
» Corollary: The minimum state DFA for a
regular language, L, is formed from the

specific right invariance equivalence
relation R, where

XR yiffvz[xze Liffyze L]

 Moreover, all minimum state machines
have the same structure as the above,
except perhaps for the names of states
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What is Regular So Far?

* Any language accepted by a DFA

* Any language accepted by an NFA

* Any language specified by a Regular
Expression

* Any language representing the unique
solution to a set of properly constrained
regular equations
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What is NOT Regular?

« Well, anything for which you cannot write
an accepting DFA or NFA, or a defining
regular expression, or a right/left linear
grammar, or a set of regular equations, but
that’'s not a very useful statement

* There are two tools we have:
— Pumping Lemma for Regular Lnaguges
— Myhill-Nerode Theorem
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« A transducer is a machine with output

 Mealy Model
— M — (Q, Z, F, 6, 'Y, qo)
I" is the finite output alphabet
v: Q X ¥ — T'is the output function

— Essentially a Mealy Model machine produced a character of
output for each character of input it consumes, and it does so on

the transitions from one state to the next.

— A Mealy Model represents a synchronous circuit whose output is
triggered each time a new input arrives.
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* Write a Mealy finite-state machine that
produces the 2’'s complement result of
subtracting 1101 from a binary input
stream (assuming at least 4 bits of input)

mM,O/O

~QrQROLRE
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e Moore Model

- M= (Q, Z, F, 8, Y, qo)
I" is the finite output alphabet
v: Q - T is the output function

— Essentially a Moore Model machine produced a
character of output whenever it enters a state,
independent of how it arrived at that state.

— A Moore Model represents an asynchronous circuit
whose output is a steady state until new input arrives.
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Summary of Decision and
Closure Properties

Regular Languages



Decidable Properties

« Membership (just run DFA over string) s

e L =@: Minimize and see if minimum state DFAi@

3
o L =2% Minimize and see if minimum state DFA is ’

* Finiteness: Minimize and see if there are no loops
emanating on a path to a final state

« Equivalence: Minimize both and see if isomorphic

o

11/26/19 COT 4210 © UCF 113



Closure Properties

« Virtually everything with members of its own class as we
have already shown

« Union, concatenation, Kleene *, complement,
intersection, set difference, reversal, substitution,
homomorphism, quotient with regular sets, Prefix, Suffix,
Substring, Exterior, Min, Max and so much more
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* Finite Automata
 Moore and Mealy models: Automata with output.
* Regular operations

* Non-determinism: Its use. Conversion to
deterministic FSAs. Formal proof of equivalence.

« Lambda moves: Lambda closure of a state
« Regular expressions

« Equivalence of REs and FSAs.

 Pumping Lemma: Proof and applications.
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Regular Languages # 2

* Regular equations: REQs and FSAs.

* Myhill-Nerode Theorem: Right invariant
equivalence relations. Specific relation for a
language L. Proof and applications.

* Minimization: Why it's unique. Process of
minimization. Analysis of cost of different
approaches.

* Regular (right linear) grammars, regular
languages and their equivalence to FSA
languages.
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Regular Languages # 3

* Closure properties: Union, concatenation,
Kleene *, complement, intersection, set
difference, reversal, substitution, homomorphism
and quotient with regular sets, Prefix, Suffix,
Substring, Exterior.

 Algorithms for reachable states and states that
can reach some other chosen states.

« Decision properties: Emptiness, finiteness,
equivalence.
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Assignment #5

1. For each of the following, prove it is not regular by using the Pumping Lemma or
Myhill-Nerode. You must do at least one of these using the Pumping Lemma and at
least one using Myhill-Nerode.

a. L={abi|i>2%}
b. L={af"| f(0)=2; f(i+1) = f(i)2 }
c. L={a%]|g(i)=i}

2. Write a regular (right linear) grammar that generates L = the regular set represented
by (00 + 010 + 001)*.

3. Present a Mealy Model finite state machine that reads an input x € {0, 1}* and
produces the binary number that represents the result of adding binary 10101 to x
(assumes all numbers are positive, including results). Note: The binary number is
read from least to most significant bit.

Due: Tuesday, Oct. 1, 11:59PM (use Webcourses to turn in)
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Formal Languages

Includes and Expands on
Chapter 2 of Sipser



History of Formal Language

* In 1940s, Emil Post (mathematician) devised rewriting systems as a
way to describe how mathematicians do proofs. Purpose was to
mechanize them.

« Early 1950s, Noam Chomsky (linguist) developed a hierarchy of
rewriting systems (grammars) to describe natural languages.

« Late 1950s, Backus-Naur (computer scientists) devised BNF (a
variant of Chomsky’ s context-free grammars) to describe the
programming language Algol.

* 1960s was the time of many advances in parsing. In particular,
parsing of context free was shown to be no worse than O(n3). More
importantly, useful subsets were found that could be parsed in O(n).
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« G=(V, 2, R, S)is aPhrase Structured Grammar (PSG)
where

— V: Finite set of non-terminal symbols
— 2. Finite set of terminal symbols

— R: finite set of rules of form a — f,
« ain (VU IV (VU I
« Bin (VU )

— S: a member of V called the start symbol

* Right linear restricts all rules to be of forms
—ainV
— B of form 2V, 2 or A
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X = Yy reads as x derives y iff
—x=vyad,y=yBdanda— 3

« =% |s the reflexive, transitive closure of =

« =+ |s the transitive closure of =

e x=>¥yiffx=yorx="zandz=y

e Or,x=>™yiffx=yorx=zandz="y

e [(G)={w]|S ="w}isthe language
generated by G.
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Regular Grammars

» Regular grammars are also called right
linear grammars

* Each rule of a regular grammar is
constrained to be of one of the three

forms:
A— A, AeV
A — a, AeV,ae 2

A — aB, A, BeV,aez2
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DFA to Regular Grammar

* Every language recognized by a DFA is
generated by an equivalent regular
grammar

« Given A =(Q,2,0,9,,F), L(A) is generated
by G, = (Q,2,R,q,) where R contains
g — as iff 5(q,a)=s,a€e 2
q—oA iffqeF
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Example of DFA to Grammar

« DFA

« Grammar

A —-> 0B | 1B

B —»> O0A | 1C | A

C > 0C| 1A | A
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Regular Grammar to NFA

* Every language generated by a regular grammar
IS recognized by an equivalent NFA

« Given G =(V, 2, R, S), L(G) is recognized by
Ag = (VU{},2,0,5,{f}) where 0 is defined by
0(A,a) &{B} iff A— aB
0(A,a) c{f} iff A— a
O(A,A) C{f} iff A— A
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Example of Grammar to NFA

« Grammar

S —»> 0SS | 1A

A > 0S| 0A | 1B | A
B —> 18 | 0B

* NFA (can remove f and make A final)
\u>£)
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What More is Regular?

* Any language, L, generated by a right linear grammar

« Any language, L, generated by a left linear grammar
(A—a, A— A, A— Ba)

— Easy to see L is regular as we can reverse these rules and get a
right linear grammar that generates LR, but then L is the reverse
of a regular language which is regular

— Similarly, the reverse LR of any regular language L is right linear
and hence the language itself is left linear

« Any language, L, that is the union of some of the classes
of a right invariant equivalence relation of finite index

11/26/19 COT 4210 © UCF 128



Mixing Right and Left Linear

« We can get non-Regular languages if we present
grammars that have both right and left linear rules

* To see this, consider G = ({S,T}, 2, R, S), where R is:
— S —aTl
— T—>Sb|b

« L(G)={a"b"| n>0}which is a classic non-regular,
context-free language
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Context Free Languages



G=(V, % R, S)isaPSG where

Each member of R is of the form

A — o where « is a strings (VUZX)*

Note that the left hand side of a rule is a letter in V;

The right hand side is a string from the combined alphabets
The right hand side can even be empty (g or A)

A context free grammar is denoted as a CFG and the language
generated is a Context Free Language (CFL).

A CFL is recognized by a Push Down Automaton (PDA) to be
discussed a bit later.
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Example of a grammar for a small language:

G = ({<program>, <stmt-list>, <stmt>, <expression>},
{begin, end, ident, ;, =, +, -}, R, <program>) where R is

<program> —> begin <stmt-list> end
<stmt-list> =2 <stmt> | <stmt> ; <stmt-list>
<stmt> —> ident = <expression>

<expression> —> ident + ident | ident - ident | ident

1411 [N T 2 A T 2

Here “ident” is a token return from a scanner, as are “begin”, “end”, “;”, “=",

11 [ A TR 4

+7 4.

>

Note that “;” is a separator (Pascal style) not a terminator (C style).
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A sentence generation is called a derivation.

Grammar for a simple
assignment statement:

The statementa:=b*(a+c)
Is generated by the leftmost derivation:

R1 <assgn> - <id> := <expr> <assgn> = <id> := <expr>

R2 <id> 2> al|bjc
R3 <expr> = <id> + <expr>

R4 | <id>* <expr>
R5 | (<expr>)
R6 | <id>

In a leftmost derivation only the
leftmost non-terminal is replaced

11/26/19 COT 4210 © UCF

= a := <expr>

= a := <id> * <expr>
= a:=b * <expr>

= a:=b*(<expr>)

= a:=b *(<id>+ <expr>)

=a:=b*(a+ <expr>)
—a:=b*(a+<id>)
=a:=b*(a+c)
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A parse tree is a graphical representation of a derivation
For instance the parse tree for the statement a:=b*(a+c) is:

<assign>

\ ' B
\ e

Every internal node of a b <expr> )
parse tree is labeled with \

a non-terminal symbol.

<expr>

<|d> + <expr>
Every leaf is labeled with a |
terminal symbol. a <id>
The generated string is read
left to right c
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A grammar that generates a sentence for which there are two or more
distinct parse trees is said to be “ambiguous”

For instance, the following grammar is ambiguous because it generates

distinct parse trees for the expressiona:=b+c*a

<assgn> - <id> := <expr>

<id> 2> alb]jc

<expr> = <expr> + <expr>
| <expr>* <expr>
| (<expr>)
| <id>
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<assign> <assign>

<id> = <expr> <id> = <expr>

| N | SN

A <expr> + <expr> A <expr> * <expr>
| /N /TN |
<id> <expr> *  <expr> <expr> + <expr> <id>
| | | | | |
B <jd> <id> <id> <id> A

C A B C

This grammar generates two parse trees for the same expression.

If a language structure has more than one parse tree,
the meaning of the structure cannot be determined uniquely.
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Operator precedence:
If an operator is generated lower in the parse tree, it indicates that the
operator has precedence over the operator generated higher up in the tree.

An unambiguous grammar for expressions:

<assign> = <id> := <expr>

<id> 2> alb]c This grammar indicates the usual
<expr> = <expr> + <term> precedence order of multiplication and
| <term> addition operators.
<term> - <term> * <factor> _ _
| <factor> This grammar generates unique parse

trees independently of doing a

<factor> > (<expr>) rightmost or leftmost derivation

| <id>

11/26/19 COT 4210 © UCF 137



Leftmost derivation:
<assgn> - <id> := <expr>
- a = <expr>

- a := <expr> + <term>
- a = <term> + <term>
- a := <factor> + <term>
- a = <id> + <term>

- a:=b + <term>

- a := b + <term> *<factor>
- a := b + <factor> * <factor>
- a :=b + <id> * <factor>

2> a:=b+ c *<factor>

2 a:=b+ c *<id>

2>a:=b+ c*

11/26/19

a

: Rightmost derivation:

<assgn> = <id>

= <id>
= <id>
= <id>
= <id>
= <id>
= <id>
= <id>
= <id>
= <id>
= <id>
= <id>

:= <expr>

= <expr> + <term>

:= <expr> + <term> *<factor>
= <expr> + <term> *<id>
= <expr> + <term>* a
:= <expr> + <factor>* a
= <expr> + <id>* a
=<expr>+c * a
=<term>+c * a

= <factor>+c * a
=<id>+c * a

=b+c *a

—>a:=b+ c *a
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A Grammar is Ambiguous if there are two
distinct parse trees for some string

* Or, two distinct leftmost derivations
* Or, two distinct rightmost derivations

« Some languages are inherently ambiguous but
many are not

« Unfortunately (to be shown later) there is no
systematic test for ambiguity of context free
grammars
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When we encounter ambiguity, we try to rewrite the grammar to avoid
ambiguity.

The ambiguous expression grammar:

<expr> - <expr> <op> <expr> | id | int | (<expr>)
<op> >+|-|"|/

Can be rewritten as:
<expr> > <term> | <expr> + <term> | <expr> - <term>

<term> - <factor> | <term> * <factor> | <term> / <factor>.
<factor> - id | int | (<expr>)
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The parsing Problem: Take a string of symbols in a language (tokens)

and a grammar for that language to construct the parse tree or report

that the sentence is syntactically incorrect.

11/26/19

For correct strings:

Sentence + grammar - parse tree

For a compiler, a sentence is a program:
Program + grammar -> parse tree

Types of parsers:

Top-down aka predictive (recursive descent parsing)

Bottom-up aka shift-reduce
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* There are some CFLs that are inherently
ambiguous and others for which we may
just have carelessly written an ambiguous
grammar.

* We will see later in course that it is not
possible to inspect an arbitrary CFG and
determine if it is unambiguous.

 However, parsers must be unambiguous
to avoid semantic ambiguity.
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Not All is Lost

» Just because we cannot determine
ambiguity of a grammar does not mean we
cannot have a subclass of grammars that
are guaranteed to be unambiguous and
that can be used to generate precisely the
set of unambiguous CFLs.
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LR(k) and LL(k) Grammars

* An LL(k) grammar is a grammar that can
drive a top-down parse by always making
the right parsing decision with just k
tokens of lookahead.

* An LR(k) grammar is a grammar that can
drive a bottom-up parse by always making
the right parsing decision with just k
tokens of lookahead.
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LL(k) Grammars

* LL means reading the input from left-to-right using a
leftmost derivation with a correct decision requiring just k
tokens of lookahead.

* There is an algorithm to determine, for any given Kk,
whether an arbitrary CFG is LL(k).

« LL(k+1) grammars can generate languages that cannot
be generated by LL(k) ones.

e Lim k—% LL(k) gets all unambiguous CFLs.

« All programming languages you work with are LL(1) so
long as we cheat and use a symbol table.

« LL parsers hate left recursion
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LR(k) Grammars

LR means reading the input from left-to-right using a
right derivation run in reverse with a correct decision
requiring just k tokens of lookahead.

* There is an algorithm to determine, for any given Kk,
whether an arbitrary CFG is LL(k).

« LR(1) grammars are sufficient to generate to any and all
unambiguous CFLs.

« All programming languages you work with are LR(1) so
long as we cheat and use a symbol table.

* LR parsers hate right recursion.
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Removing Left Recursion if
doing Top Down

Given left recursive and non left recursive rules
A—)AOL1 | |AOLn | B1 | | Bm
Can view as

A= (Bl | Bm) (g [ [0 )

Star notation is an extension to normal notation with
obvious meaning

Now, it should be clear this can be done right recursive as
A->BB|...|B,B
B—o>aoaB|...|a,B|A
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Right Recursive Expressions

Grammar: Expr - Expr + Term | Term
Term - Term * Factor | Factor

Factor = (Expr) | Int

Fix: Expr = Term ExprRest
ExprRest 2> + Term ExprRest | A
Term - Factor TermRest
TermRest -2 * Factor TermRest | A
Factor = (Expr) | Int
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Bottom Up vs Top Down

* Bottom-Up: Two stack operations
— Shift (move input symbol to stack)
— Reduce (replace top of stack a with A, when A—a)
— Challenge is when to do shift or reduce and what reduce to do.
« Can have both kinds of conflict
* Top-Down:
— If top of stack is terminal
 |f same as input, read and pop
* If not, we have an error
— If top of stack is a non-terminal A
» Replace A with some o, when A—a.
» Challenge is what A-rule to use
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 Each rule of a CFG is constrained to be of

one of the three forms:
A — a, AeV,ae 2
A — BC, ABCeV

* |f the language contains A then we allow

S —> A
and constrain all non-terminating rules of

form to be
A — BC, AeV, B,C e V-{S}
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e LetG=(V, %, R, S) be an arbitrary CFG
« Compute the set Nullable(G) ={A| A=A}

* Nullable(G) is computed as follows
Nullable(G) 2 {A|A— AL}
Repeat
Nullable(G) 2 { B | B — a and o € Nullable* }

until no new symbols are added
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« LetG=(V, 2, R, S)be an arbitrary CFG
« Compute the set Nullable(G)

* Remove all A-rules

* For each rule of form B — oA} where A is nullable, add
In the rule B — aof

 The above has the potential to greatly increase the

number of rules and add unit rules
(those of form B — C, where B,CeV)

« If Sis nullable, add new start symbol S,, as new start
state, plus rules Sy, — A and S; — o, where S — o
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« LetG =(V, %, R, S) be an arbitrary CFG that has
had its A-rules removed

 For AeV, Chain(A)={B|A="B, BeV}
* Chain(A) is computed as follows
Chain(A) 2 {A}
Repeat
Chain(A)2{C | B — C and B € Chain(A) }
until no new symbols are added
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« LetG=(V, Z, R, S) be an arbitrary CFG that has had its
A-rules removed, except perhaps from start symbol

« Compute Chain(A) for all AeV

* Create the new grammar G = (V, %, R, S) where R is
defined by including for each A€V, all rules of the form
A — o,whereB— a€R,a ¢V andB € Chain(A)
Note: AeChain(A) so all its non unit-rules are included
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Non-Productive Symbols

« LetG=(V, Z, R, S) be an arbitrary CFG that has had its
A-rules and unit-rules removed

« Non-productive non-terminal symbols never lead to a
terminal string (not productive)

* Productive(G) is computed by
Productive(G) 2 {A| A — o, aeX*}
Repeat
Productive(G) 2 { B | B — a, a€(ZUProductive)* }
until no new symbols are added

« Keep only those rules that involve productive symbols
 If no rules remain, grammar generates nothing
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Unreachable Symbols

« LetG=(V, %, R, S)be an arbitrary CFG that has had its A-
rules, unit-rules and non-productive symbols removed

« Unreachable symbols are ones that are inaccessible from
start symbol

« We compute the complement (Useful)

« Useful(G) is computed by
Useful(G) 2 {S}
Repeat
Useful(G) 2 { C | B — aCpB, CeVuz, Be Useful(G) }
until no new symbols are added

« Keep only those rules that involve useful symbols
 If no rules remain, grammar generates nothing
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* Areduced CFG is one without A-rules
(except possibly for start symbol), no unit-
rules, no non-productive symbols and no
useless symbols
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e LetG=(V, 2, R, S)be arbitrary reduced CFG
 Define G'=(Vu{<a>|ae2}, Z, R, S)
 Add the rules <a> — a, for all ae2

 Foranyrule, A — a, |a| > 1, change each terminal
symbol, a, in o to the non-terminal <a>

* Now, for each rule A — BCa, |a| > 0, introduce the new
non-terminal B<Ca>, and replace the rule A — BCa with
the rule A — B<Co> and add the rule <Co> — Ca

« lteratively apply the above step until all rules are in CNF
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Example of CNF Conversion



« L={a' bl ck|i=jorj=k}
« G =({S,A,<B=C>,C,<A=B>}, {a,b}, R, S)
* R:

~S>A|C

—A>aA|<B=C>

—<B=C> > b <B=C>c | A

—C > Cc|<A=B>

—<A=B>> a<A=B>b | A
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* Nullable = {<B=C>, <A=B>, A, C, S}
-S> S |A Il S’ added to V
-S2>A|C
—A>aA]|a|<B=C>
—<B=C>->b<B=C>c|bc
—C>Cc|c|<A=B>
—<A=B> > a<A=B>b | ab
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* Chains=
{[S’:S’,S,A,C,<A=B>,<B=C>],[S:S,A,C,<A=B>,<
B=C>],
[A:A,<B=C>],[C:C,<B=C>],[<B=C>:<B=C>],
[<A=B>:<A=B>])

-S> A|aA|a|b<B=C>c|bc|Cc|c|a<A=B>b | ab
—S>aA|a|b<B=C>c|bc|Cc|c|a<A=B>b | ab
—A > aA|a|b<B=C>c|bc

—<B=C> - b<B=C>c | bc

—C > Cc|c|a<A=B>b | ab

—<A=B> - a<A=B>b | ab
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 All non-terminal symbols are productive (lead
to terminal string)

* S is useless as it is unreachable from S’ (new
start).

 All other symbols are reachable from S’
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« S’ 2> A| <a>A | a| <b><<B=C><c>> | <b><c> |
C<c> | c | <a><<A=B><b>> | <a><b>

A 2 <a>A | a|<b><<B=C><c>> | <b><c>
e <B=C> = <b><<B=C><c>> | <b><c>

» C > C<c> | c | <a><<A=B><b>> | <a><b>
e <A=B> =2 <a> <<A=B><b>> | <a><b>

e <<B=C><c>> - <B=C><c>

e <<A=B><b>> > <A=B><b>

« <a> > a

« <b>—->b

e <C>—2C
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CKY (Cocke, Kasami, Younger)
O(N3) PARSING
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Dynamic Programming

To solve a given problem, we solve small parts of the problem (subproblems),
then combine the solutions of the subproblems to reach an overall solution.

The Parsing problem for arbitrary CFGs was elusive, in that its complexity was
unknown until the late 1960s. In the meantime, theoreticians developed notion
of simplified forms that were as powerful as arbitrary CFGs. The one most

relevant here is the Chomsky Normal Form — CNF. It states that the only rule
forms needed are:

A > BC where B and C are non-terminals
A-> a where a is a terminal

This is provided the string of length zero is not part of the language.
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CKY (Bottom-Up Technique)

Let the input string be a sequence of n letters ay ... a,,.
Let the grammar contain r terminal and nonterminal symbols R, ... R,,
Let R4 be the start symbol.
Let P[n,n] be an array of Sets over {1,...n}. Initialize all elements of P to empty ({}).
Foreachcol=1ton

For each unit production X — a;, set add X to P[1,col].
Foreachrow =2ton

For each col = 1 to n-row+1

For each row2 = 1 to row-1
if B € P[row2,col] and C € P[row-row2,col+row2] and A -> B C then
add A to P[row,col]

If Ry € P[n,n] is true then a; ... a,,is member of language
else a, ... a, is not a member of language

11/26/19 COT 4210 © UCF 167



CKY Parser

Present the CKY recognition matrix for the string abba assuming the Chomsky

Normal Form grammar, G = ({S,A,B,C,D,E}, {a,b}, R, S), specified by the rules R:

S » AB | BA

A > CD | a

B » CE| Db

C - a |b

D > AC

E - BC
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I

2"d CKY Example

E - EF |[ME|PE]|a
F - MF|PFIME|PE
P - +
M- —

m
=
m
o
m
=
m

m
-

E,F
E
- ||
-
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Assignment # 6

1.  Write a CFG for the following languages:
L={arbic'|p=]|q-r|}where|x|is absolute value of x

2. Convert the following grammar to a CNF equivalent grammar. Show all steps.
G =({S,A,B}, {a,b}, S, R} where Ris:
S > SS | ABA
A > ABB | a
B> BS|b]|A
3. Present the CKY recognition matrix for the string a— (b —a) + a assuming the Chomsky Normal
Form grammar, G = ({E,F,G,H,K,LM,P,Q }, {a,b,+,-,(,)}, E, R), where R is:
E->EG|EH|LK]|a| b
G ->PF
H-> MF
K-> EQ
F - a|b]|LK
P -+
M- -
L - (
Q -)
Due: Tuesday, Oct. 8, 11:59 PM (use Webcourses to turn in)
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Pumping Lemma for
Context Free Languages

What is not a CFL



Let L be a context free language the there is CNF grammar

G=(V, 2, R, S)suchthat L(G) =L.

As G is in CNF all its rules that allow the string to grow are of the form
A — BC, and thus growth has a binary nature.

Any sufficiently long string z in L will have a parse tree that must have deep
branches to accommodate z's growth.

Because of the binary nature of growth, the width of a tree with maximum
branch length k at its deepest nodes is at most 2k; moreover, if the frontier
of the tree is all terminal, then the string so produced is of length at most
2k-1: since the last rule applied for each leaf is of the form A — a.

Any terminal branch in a derivation tree of height > |V| has more than |V]|
internal nodes labelled with non-terminals. The “pigeonhole principle” tells
us that whenever we visit |V| +1 or more nodes, we must use at least one
variable label more than once. This creates a self-embedding property that
is key to the repetition patterns that occur in the derivation of sufficiently
long strings.
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* LetL be a CFL then there exists an N>0 such
that, if z € L and |z| 2 N, then z can be written in
the form uvwxy, where |vwx| < N, |vx|>0, and for
all i=0, uviwxly e L.

« This means that interesting context free
languages (infinite ones) have a self-embedding
property that is symmetric around some central
area, unlike regular where the repetition has no
symmetry and occurs at the start.
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 |IfLis a CFL then itis generated by some CNF grammar, G = (V, 2,
R, S). Let |[V| = k. For any string z, such that |z] 2 N = 2%, the
derivation tree for z based on G must have a branch with at least
k+1 nodes labelled with variables from G.

« By the PigeonHole Principle at least two of these labels must be the
same. Let the first repeated variable be T and consider the last two
instances of T on this path.

 Letz=uvwxy, where S =* uTy =* uvTxy =* uvwxy
* Clearly, then, we know S =* uTy; T=*vIx;and T =2*w

« But then, we can start with S =* uTy; repeat T =* vIx zero or more
times; and then apply T =* w.

« Butthen, S =* uv'wxly for all i20, and thus uv'wxly € L, for all i 0.
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Visual Support of Proof

S
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Assume L = {a"b"c" | n>0 } is a CFL

P.L.: Provides N>0 We CANNOT choose N; that's the P.L.’s job

Our turn: Choose aNbNcN € L We get to select a string in L

P.L.: aNbNcN = uvwxy, where |vwx| < N, |vx|>0, and for all i=0,

uviwxly e L We CANNOT choose split, but P.L. is constrained by N
Our turn: Choose i=0. We have the power here

P.L: Two cases:

(1) vx contains some a’s and maybe some b’s. Because [vwx| < N, it cannot
contain c’s if it has a’s. i=0 erases some a’s but we still have N c’'s so uwyéL

(2) vx contains no a’s. Because |vx|>0, vx contains some b’s or c’s or some of each.
i=0 erases some b’s and/or c’s but we still have N a’s so uwy¢éL

CONTRADICTION, so L is NOT a CFL
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* Intersection ({ a"b"c" | n20 } is not a CFL)
{a"b"c" | n20} =
{a"b"c™ | nm=0} N {amb"c" | n,m=0 }
Both of the above are CFLs

« Complement
If closed under complement then would be

closed under Intersection as
ANB=~(~AuU~B)
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« Consider the two operations on languages max and min, where

— max(L) = {x | x € L and, for no non-null y does xy € L } and

— min(L) ={ x| x € L and, for no proper prefix of x, y, doesy € L }
« Describe the languages produced by max and min. for each of :

— L1={abck|k<iork<j} CFL
« max(L1)= {a'bi c| k =max(i,j) } Non-CFL
« min(L1) = { A} (string of length 0) Regular
— L2={a'bick|k>iork>j} CFL
« max(L2)= { } (empty) Regular
« min(L2)=  {a'bi cX| k =min(i, j)+1} Non-CFL

 max(L1) shows CFL not closed under max
« min(L2) shows CFL not closed under min
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Complement of ww

« LetL={ww|we{ab}}. Lisnota CFL

« Consider L’s complement, it must be of form xayx’by’ or xbyx’'ay’,
where [x|=|X’| and |y|=|y’|

* The above reflects that this language has one “transcription error”

« This seems really hard to write a CFG but it's all a matter of how you
view it

 We don’t care about what precedes or follows the errors so long as
the lengths are right

 Thus, we can view above as xax’yby’ or xbx'y'ay’,
where [x|=|X’| and |y|=|y’|

« The grammar for this has rules
S—+AB | BA;A—>XAX |a;B—=>XBX | b
X—a]|b
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* LetL be an arbitrary CFL generated by CFG G
with start symbol S then the following are all
decidable

— Iswin L? Run CKY
If S in final cell then weL

— Is L empty (non-empty)?  Reduce G
If no rules left then empty

— Is L finite (infinite)? Reduce G
Run DFS(S)

If no loops then finite
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Assignment # 7

1. Use the Pumping Lemma for CFLs to prove that none of the
following are CFLs.
a) L ={a'b ck d™ | m = min(max(i,j), k)}
b)L={a'bl|j=Xj_1k }
c)L={wwRw]|we {a,b}"}

Due: Thursday Oct. 10, 11:59PM (use Webcourses to turn in)
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Closure Properties

Context Free Languages



Intersection with Regular

« CFLs are closed under intersection with Regular sets

— To show this we use the equivalence of CFGs generative power with the
recognition power of PDAs (shown later).

— LetAg=(Qq, X, T, 80, o, $, Fp) be an arbitrary PDA
— Let Ay =(Qq, Z, 84, 4, F1) be an arbitrary DFA

— Define A2 = ( Qo X Q1, 2, I, 62, <Jo0,91> $, FO X F1) where
« 8,(<q,s>, a, X) 2{(<q’,s’ >, o)}, aeXZ AL}, XeT iff
S0(a, @, X) 2{(q", &)} and
8,(s,a)=s’ (ifa=rthens’ =s).
— Using the definition of derivations we see that
[<q01q1>’ W, $] |_* [<t’S>’ }"’ B] in A2 iff
[qO’ W, $] |_* [t’ 7\" B] in AO and
[a4, W] " [s, A]in Aq
But then we ¥ (A,) iff teFg and seF, iff we F(Ag) and weF(A+)
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Substitution

 CFLs are closed under CFL substitution
— Let G=(V,Z,R,S) be a CFG.
— Let f be a substitution over X such that
« f@)=Lyforae X
¢ G, = (V,,24,R,,S,) is a CFG that produces L.
* No symbol appears in more than one of V or any V,
— Define G;= (V U, sV, Uaes2a, RT ULsR,, S)
« R" ={A > g(a) where A > aisinR}
* 91 (VUE)" > (V UaexSa )
« gA)=A;9(B)=B,BeV;g(a)=S,,acx
¢ g(aX)=g(a) g(X), |a| >0, X € VUZ
— Claim, f(£(G)) = £(Gs), and so CFLs closed under

substitution and homomorphism.
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More on Substitution

« Consider G’ ;. If we limit derivations to the rules R = { A - g(a)
where A — a is in R } and consider only sentential forms over the

UzesS, ,then S =*S,,S,,...S,,inG" iffS=*a1a2...an
iff a1 a2 ... an € £(G). But, then w € £(G) iff f(w) € £(Gs) and, thus,

f(Z(G)) = X(Gy)-

« Given that CFLs are closed under intersection, substitution,
homomorphism and intersection with regular sets, we can recast
previous proofs to show that CFLs are closed under

— Prefix, Suffix, Substring, Quotient with Regular Sets

« Later we will show that CFLs are not closed under Quotient with
CFLs.
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« Finite-state automata and Regular languages
— Definitions: Deterministic and Non-Deterministic
— Notions of state transitions, acceptance and language accepted
— State diagrams and state tables

— Construction from descriptions of languages

— Conversion of NFA to DFA
« A-Closure
* Subset construction
* Reachable states
* Reaching states
* Minimizing DFAs (distinguishable states)
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* Regular expressions and Regular Sets

— Definition of regular expressions and regular sets
— Every reqgular sets is a regular language

— Every regular language is a regular set
* Ripping states (GNFA)
* R < expressions
= R = R + (Rigerny * (Reksypern) )™ * R
— L(A) = +1er Ry
» Regular equations
— Uniqueness of solution to R=Q+RP

— Solving for expressions associated with states
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 Pumping Lemma
— Classic non-regular languages {O" 1" | n >= 0}

— Formal statement and proof of Pumping Lemma for Regular
Languages

— Use of Pumping Lemma
* Minimization (using distinguishable states)

* Myhill-Nerode
— Right Invariant Equivalence Relations (RIER)
— Specific RIER, x R, y Vz [xzelL & yz€L] is minimal
— Uniqueness of minimum state DFA based on R,
— Use to show languages are no Regular
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«  Grammars
— Definition of grammar and notions of derivation and language
— Restricted grammars: Regular (right and left linear)
— Why you can’t mix right and left linear and stay in Regular domain
— Relation of regular grammars to finite-state automata

« Closures
— Union, Concatenation, Keene star
— Complement, Exclusive Union, Intersection, Set Difference, Reversal
— Substitution, Homomorphism, Quotient, Prefix, Suffix, Substring
— Max, Min
« Decidable Properties
— Membership
- L=0
- L=
— Finiteness / Infiniteness
— Equivalence
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« Context free grammars

11/26/19

Writing grammars for specific languages
Leftmost and rightmost derivations, Parse trees, Ambiguity
Closure (union, concatenation, reversal, substitution, homomorphism)
Pumping Lemma for CFLs
Chomsky Normal Form
* Remove lambda rules
* Remove chain rules
* Remove non-generating (unproductive) non-terminals (and rules)

* Remove unreachable non-terminals (and rules)
» Make rhs match CNF constraints

CKY algorithm
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Midterm Topics.6

* Closure

— Union, concatenation, star

— Substitution

— Intersection with regular

— Quotient with regular, Prefix, Suffix, Substring
* Non-Closure

— Intersection, complement, min, max
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Push Down Automata

CFL Recognizers



« A=(Q, 2,T,0,qq £y F)

Q is finite set of states

2 is finite input alphabet

[ is finite set of stack symbols

¢« 0:QXZ X[, — 29%" is transition function

— Note: Can limit stack push to ', but it's equivalent!!
Zy € [ I1s an optional initial symbol on stack

F € Qs final set of states and can be omitted
for some notions of a PDA
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* An instantaneous description for a PDA is

[, W, Y] where

— g Is current state

— W is remaining input

— Y is contents of stack (leftmost symbol is top)
» Single step derivation is defined by

- [q,ax,Za] |— [p,x,Ba] if &(q,a,Z) contains (p,p)
* Multistep derivation (|[—%) is the reflexive

transitive closure of single step.
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« GivenA=(Q, 2, T, 9, qp, £y, F)
there are three senses of recognition

» By final state
L(A) = {wl|[qo,w.Zo] |—" [f,A,B]}, where feF

* By empty stack
N(A) = {wl[qo,w,Zo] [—" [q,AA]}

* By empty stack and final state
E(A) = {w|[qo,w.,Zo] |—" [f,A,A]}, where feF
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« Given G =(V, 2, R, S), define
A=({q}, 2,2UV, 0, q, S, ¢)

* 0(q,a,a) ={(q,\)} foralla € 2
* 0(q,AA) ={(g,a) | A— a e R (guess) }
* N(A) = L(G)

» Has just one state, so is essentially
stateless, except for stack content
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ESE+T|T
TS>T*F|F
F > (E)| Int

*0(q,+,+) = 1(q,A)} 0(q,%,%) = {(q.A)},

*0(q,Int,Int) = {(q,\)},

*0(0,(,() ={(a,A)}, 6(a.),)) = {(Q,A)}
*0(q,A.E) = {(q,E+T), (q,T);
*0(q,A,T) = 1(a,T"F), (q,F);
*0(9,A.F) = {(a.(E)), (q.Int)}
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« Given G=(V, 2, R, S), define
A= ({a,f}, Z, ZUVU{$}, §, q, 3, {f})

* 0(g,a,A) ={(g,a)} forallae 2, SHIFT

« O(q,A,aR) 2{(q,A)} if A— a e R, REDUCE
Cheat: looking at more than top of stack

* 0(9,A,S) 2 {(f,A)}

+ 3(F,A$) = {(f.A)  ACCEPT

* E(A) = L(G)

« Could also do 8(q,A,S$)2{(q,A)}, N(A) = L(G)
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ESE+T|T
TS>T*F|F
F > (E)| Int

*0(q,+,A)={(q,+)}, 6(q,",A)={(q,")}, 0(q.Int,A)={(q,Int)},

6(9,(:A)=1(a,()} 6(Q.).A)={(q.))}

*0(q,A, T+E) = {(q,E)}, 6(q.A.T) 2 {(q.E)}
*0(q,A,F*T) 2 {(9,T)}, 6(q.A.F) 2{(q,T)}
*0(q,A,)E() 2 {(a.F)}, o(q.A.Int) 2 {(q,F)}
*0(q,A.E) 2 {(T.A)}

o(f,\,$) = {(f,\)}

*E(A) = L(G)
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* Use the two recognizers on some sets of
expressions like
-9+ 77%2
—9*7 +2
—(5+7)*2
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Book has one approach; here is another
LetA=(Q, %, T, 5, qop Z, F) accept L by empty stack and final state

Define A’ = (QU{qy’,f}, =, T'U{$}, &, 9o, $, {f}) where
— 8(d’s A, $) = {(qq9, PUSH(2)) or in normal notation {(q,, Z$)}

— & does what 6 does but only uses PUSH and POP instructions, always reading top of stack
Note1: we need to consider using the $ for cases of the original machine looking at empty
stack, when using A for stack check. This guarantees we have top of stack until very end.
Note2: If original adds stuff to stack, we do pop, followed by a bunch of pushes.

— We add (f, A) = (f, POP) to 8’(g;, A, $) whenever q; is in F, so we jump to a fixed final state.

Now, wlog, we can assume our PDA uses only POP and PUSH, has just

one final state and accepts by empty stack and final state. We will assume
the original machine is of this form and that its bottom of stack is $.

Define G = (V, %, R, S) where
- V={Slu{<q, X, p>[qpeQ Xel}
— R on next page
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* R contains rules as follows:
S — <qg,%,f> where F = {f}
meaning that we want to generate w whenever
G0, W, $] Tf,AA]
* Remaining rules are:
<q,X,p> = a<s,Y,t><t,X,p>
whenever 56(q,a,X) 2 {(s,PUSH(Y))}
<qg,X,p> —> a
whenever §(q,a,X) 2 {(p,POP)}
« Want <q,X,p>="w when [q,w,X] —"[p,A,A]
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Context Sensitive



Context Sensitive Grammar

G=(V, %R, S)isaPSG where

Each member of R is a rule whose right side is no shorter than its left
side.

The essential idea is that rules are length preserving, although we do
allow S — A so long as S never appears on the right hand side of any
rule.

A context sensitive grammar is denoted as a CSG and the language
generated is a Context Sensitive Language (CSL).

The recognizer for a CSL is a Linear Bounded Automaton (LBA), a form
of Turing Machine (soon to be discussed), but with the constraint that it
is limited to moving along a tape that contains just the input surrounded
by a start and end symbol.
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Phrase Structured Grammar

We previously defined PSGs. The language generated by a
PSG is a Phrase Structured Language (PSL) but is more
commonly called a recursively enumerable (re) language.
The reason for this will become evident a bit later in the
course.

The recognizer for a PSL (re language) is a Turing
Machine, a model of computation we will soon discuss.
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CSG Example#1

L ={a"b"c" | n>0 }

G = ({A,B,C}, {a,b,c}, R, A) where R is
A — aBbc | abc

B — aBbC |abC

Note: A = aBbc =n a™*'(bC)" bc [/ n>0
Cb — bC // Shuttle C overtoac
Cc — cc // Change Ctoac

Note: a””(bC)n bc =* gnht1pn+1gn+
Thus, A =* anbich . n>0
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CSG Example#2

L={ww|we{0,1}"}

G = ({S,A,X,Z2,<0>,<1>}, {0,1}, R, S) where R is

S —00]11]|0A<0> | 1A<1>

A —0AZ|1AX|0Z]|1X

Z0 — 0Z Z1 —1Z // Shuttle Z (for owe zero)

X0 — 0X X1 —->1X // Shuttle X (for owe one)

Z<0> — 0<0> Z<1>— 1<0> // New 0 must be on rhs of old 0/1’s
X<0> - 0<1> X<1>— 1<1> [/ New 1 must be on rhs of old 0/1’s
<0>—->20 // Guess we are done

<1>—>1 // Guess we are done
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* Push-down automata
— Various notions of acceptance and their equivalence
— Deterministic vs non-deterministic
— Equivalence to CFLs
« CFG to PDA definitely; PDA to CFG, only conceptually
— Top-down vs bottom up parsing via PDAs
« Context sensitive grammars and LBAs
— Rules for CSG
— Ability to shuttle symbols to preset places
— Just basic definition of LBA
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Computability

The study of models of
computation and what can/cannot
be done via purely mechanical
means



* Provide precise characterizations (computational
models) of the class of effective procedures / algorithms.

« Study the boundaries between complete and incomplete
models of computation.

« Study the properties of classes of solvable and
unsolvable problems.

« Solve or prove unsolvable open problems.

« Determine reducibility and equivalence relations among
unsolvable problems.

« Qur added goal is to apply these techniques and results
across multiple areas of Computer Science.

11/26/19 COT 4210 © UCF 210



« Late 1800’s to early 1900’s

* Russell and Whitehead: Principia Mathematica
— Developed and catalogued axiomatic schemes
« Axioms plus sound rules of inference
* Much of focus on number theory

» Hilbert

— Felt all mathematics could be developed within a formal system
that allowed the mechanical creation and checking of proofs

— Even posed 23 problems, the solutions to which he felt were
critical to understanding how to attack hard problems

 Post

— Devised truth tables as an algorithmic approach to checking
Boolean propositions for tautologies and satisfiability
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* In 1931 Godel showed that any first order theory
that embeds elementary arithmetic is either
Incomplete or inconsistent.

« (Godel also developed the general notion of
recursive functions but made no claims about

their strength.

— We will look at the formal description of recursive
functions later
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* In 1936, each presented a formalism for computability.

— Turing and Post devised abstract machines and
claimed these represented all mechanically
computable functions.

— Church developed the notion of lambda-computability
from recursive functions (as previously defined by
Godel and Kleene) and claimed completeness for this
model. Lambda calculus gave birth to Lisp.

« Kleene demonstrated the computational equivalence of
recursively defined functions to Post-Turing machines.

* Post later showed computability could also be described
by forms of symbolic rewriting systems.
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Basic Definitions

The Preliminaries



* Provide precise characterizations (computational
models) of the class of effective procedures / algorithms.

« Study the boundaries between complete and incomplete
models of computation.

« Study the properties of classes of solvable and
unsolvable problems.

« Solve or prove unsolvable open problems.

« Determine reducibility and equivalence relations among
unsolvable problems.

« Qur added goal is to apply these techniques and results
across multiple areas of Computer Science.
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* A process whose execution is clearly specified to the
smallest detail

« Such procedures have, among other properties, the
following:

— Processes must be finitely describable and the language used to
describe them must be over a finite alphabet.

— The current state of the machine model must be finitely
presentable.

— Given the current state, the choice of actions (steps) to move to
the next state must be eaS|Iy determinable from the procedure’s
description.

— Each action (step) of the process must be capable of being
carried out in a finite amount of time.

— The semantics associated with each step must be clear and
unambiguous.
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* An effective procedure that halts on all input
« The key term here is “halts on all input”

« By contrast, an effective procedure may halt on all, none
or some of its input.

 The domain of an algorithm is its entire universe of
possible inputs.

o Useful Notations

— f(x)| means procedure f converges/halts/produces an output,
when evaluated at x.

— f(x)1 means procedure f diverges, when evaluated at x.
— fis an algorithm iff ¥x f(x)]
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e Set -- A collection of atoms from some
universe U. @ denotes the empty set.

* (Decision) Problem -- A set of questions
about elements of some universe. Each
guestion has answer “yes” or ‘no”. The
elements having answer “yes” constitute a
set that is a subset of the corresponding
universe. Those having answer “no”
constitute the complement of the “yes” set.
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« Solvable or Decidable -- A problem P is said to be
solvable (decidable) if there exists an algorithm F
which, when applied to a question g in P, produces
the correct answer (“yes” or “no”). This is an
inherent property of P.

* Solved -- A problem P is said to solved if P is
solvable and we have produced its solution. This is
a temporal property in that P may have been
unsolved for many years before being solved.

« Unsolved, Unsolvable (Undecidable) --
Complements of above
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« Recursively enumerable -- A set S is recursively
enumerable (re) if S is empty (S = @) or there exists an
algorithm F, over the natural numbers N, whose range is
exactly S. A problem is said to be re if the set
associated with it is re.

« Semi-Decidable -- A problem is said to be semi-
decidable if there is an effective procedure F which,
when applied to a question q in P, produces the answer
“yes” if and only if g has answer “yes”. F need not halt
if g has answer “no”.

« Semi-decidable is the same as the notion of
recognizable used in the text.
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* P solved implies P solvable implies P
semi-decidable (re, recognizable).

* P non-re implies P unsolvable implies P
unsolved.

* P finite implies P solvable.

11/26/19 COT 4210 © UCF 221



Slightly Harder Implications

* P enumerable iff P semi-decidable.

* P solvable iff both Sp and (U - Sp) are re
(semi-decidable).

* We will prove these later.
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* A counting argument

— The number of mappings from N to N is at least as
great as the number of subsets of N. But the number
of subsets of N is uncountably infinite (X ,). However,
the number of programs in any model of computation
Is countably infinite (X,). This latter statement is a
consequence of the fact that the descriptions must be
finite and they must be written in a language with a
finite alphabet. In fact, not only is the number of
programs countable, it is also effectively enumerable;
moreover, its membership is decidable.

* A diagonalization argument
— Will be shown later in class
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Diophantine Equations are
Unsolvable

One Variable Diophantine
Equations are Solvable



* In 1900 declared there were 23 really important
problems in mathematics.

» Belief was that the solutions to these would help
address math’s complexity.

* Hilbert’'s Tenth asks for an algorithm to find the
integral roots of polynomials with integral
coefficients. For example
6x3yz2 + 3xy2 — x3 — 10 = 0 has roots
x=5,y=3;,z=0

* This is now known to be impossible to solve (In
1970, MatiyaceviC showed this undecidable).
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» Consider over one variable: P(x) =0
» Can semi-decide by plugging in
0,1,-1,2, -2, 3, -3, ...

 This terminates and says “yes” if P(x)
evaluates to 0, eventually. Unfortunately, it
never terminates if there is no x such that
P(x) =0.

» Can easily extend to P(x4,X,,..,X,) = 0.
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Turing Machines

15t Model
A Linear Memory Machine



A Turing machine is a 7-tuple
(Q, Z, F, 65 Jo. qaccepta qreject)
Q is finite set of states

2., is a finite input alphabet not containing the blank
symbol U

[ is finite set of tape symbols that includes 2 and L.
Commonly I' = 2 U {Uu}

0: QXI— QX[ x{R,L}

— Each instance of Q X I is called a discriminant

* (o starts, qaceept ACCEPLS, Qreject rejects
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Turing versus Post

The Turing description just given requires you to write a new symbol
and move off the current tape square at every step

Post had a variant where
0:QxI'— (QAx(Tu{R,L}))ud
Here, you either write or move, not both (or just flat stop)

Also, Post did not have an accept or reject state — acceptance is
giving an answer of 1; rejection is 0; this treats decision procedures
as predicates (functions that map input into {0,1})

The way we stop our machines from running is to omit actions for
some discriminants making the transition function partial

| tend to use Post’s notation and to define macros so machines are
easy to create

| am not a fan of having you build Turing tables
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We will use a simplified form that is a variant of Post’s models.

Here, each machine is represented by a finite set of states Q,
the S|mple alphabet {0,1}, where 0 is the blank symbol, and
each state transition is defined by a 4-tuple of form

gaXs

where q a is the discriminant based on current state q,
scanned symbol a; X can be one of {R, L, 0, 1}, signifying
move right, move left, print O, or 1; and s is the new state.
Limiting the alphabet to {0,1} is not really a limitation. We can

represent a k-letter alphabet by encoding the j-th letter via |

1’ s in succession. A 0 ends each letter, and two 0’ s ends a
word.

We rarely write quads. Rather, we typically will build
machines from simple forms.
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R -- move right over any scanned symbol
L -- move left over any scanned symbol
0 -- write a 0 in current scanned square
1 -- write a 1 in current scanned square

We can then string these machines together with
optionally labeled arcs.

A labeled arc signifies a transition from one part of the
composite machine to another, if the scanned square’s
content matches the label. Unlabeled arcs are
unconditional. We will put machines together without
arcs, when the arcs are unlabeled.
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® -- move right to next 0 (not including current square)

..211...10... = ...?211..10...

£ -- move left to next O (not including current square)

01112, = ...011..172...

11/26/19
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 These machines can be used to move
over encodings of letters or encodings of
unary based natural numbers.

* In fact, any effective computation can
easily be viewed as being over natural
numbers. We can get the negative
iIntegers by pairing two natural numbers.
The first is the sign (O for +, 1 for -). The
second is the magnitude.
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A reasonably standard definition of a Turing computation

of some n-ary function F is to assume that the machine
starts with a tape containing the n inputs, x1, ..., xnin
the form

...01¥101%20...01*nQ...
and ends with

...01¥101%20...01*01Y0...
where y = F(x1, ..., xn).

If we limit movement to never go left of the zero to the
left of 11, we call this Standard Turing Computing (STC).
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Need the copy family of useful
submachines, where C, copies k-th
preceding value.

0 K
K R
L R o Rk 4 k¥,

The add machine is then
C,C,1®LO

11/26/19 COT 4210 © UCF 235



* Two tracks

* N tracks

* Non-deterministic *********
* Two-dimensional

» K-dimensional

* Two stack machines

* Two counter machines
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Register Machines

2"d Model
Feels Like Assembly Language



Register Machine Concepts

A register machine consists of a finite length program,
each of whose instructions is chosen from a small
repertoire of simple commands.

The instructions are labeled from 1 to m, where there are
m instructions. Termination occurs as a result of an
attempt to execute the m+1-st instruction.

The storage medium of a register machine is a finite set
of registers, each capable of storing an arbitrary natural
number.

Any given register machine has a finite, predetermined
number of registers, independent of its input.
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Computing by Register Machines

* Aregister machine partially computing some n-
ary function F typically starts with its argument
values in the first n registers and ends with the
result in the n+1-st register.

» We extend this slightly to allow the computation
to start with values in its k+1-st through k+n-th
register, with the result appearing in the k+n+1-
th register, for any k, such that there are at least
k+n+1 registers.

« Sometimes, we use the notation of finishing with
the results in the first register, and the
arguments appearing in 2 to n+1.
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Register Instructions

« Each instruction of a register machine is of
one of two forms:

INC [i] -
increment r and jump to i.

DEC [p, z] -
iIf register r > 0, decrement r and jump to p
else jump to z
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Addition by RM

Addition (r3 < r1 + r2)

1. DEC3[1,2] : Zero result (r3) and work (r4) registers
2. DECA4[2,3]

3. DEC1[4,6] : Add r1 to r3, saving original r1 in r4
4. INC3[5]

5. INC4[3]

6. DECA4[7,8] : Restore r1

7. INC1[6]

8. DEC2[9,11] : Add r2 to r3, saving original r2 in r4
9. INC3[10]

10.INC4[8]

11.DEC4[12,13] : Restore r2

12.INC2[11]

13. : Halt by branching here
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Limited Subtraction by RM

Subtraction (r3 < r1 -r2, if r12r2; 0, otherwise)

1. DEC3[1,2] : Zero result (r3) and work (r4) registers

2. DECA4[2,3]

3. DEC1[4,6] : Add r1 to r3, saving original r1 in r4

4. INC3[5]

5. INC4[3]

6. DECA4[7,8] : Restore r1

7. INC1[6]

8. DEC2[9,11] : Subtract r2 from r3, saving original r2 in r4
9. DEC3[10,10] : Note that decrementing 0 does nothing

10.INC4[8]

11.DEC4[12,13] : Restore r2
12.INC2[11]

13. : Halt by branching here
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Factor Replacement
Systems

3" Model
Deceptively Simple



Factor Replacement Concepts

« A factor replacement system (FRS) consists of a finite
(ordered) sequence of fractions, and some starting
natural number Xx.

» A fraction alb is applicable to some natural number x,
just in case x is divisible by b. We always chose the first
applicable fraction (a/b), multiplying it times x to produce
a new natural number x*al/b. The process is then
applied to this new number.

« Termination occurs when no fraction is applicable.

« A factor replacement system partially computing n-ary
function F typically starts with its argument encoded as
powers of the first n odd primes. Thus, arguments
x1,x2,...,xn are encoded as 3x15%2,,.p x". The result
then appears as the power of the prime 2.
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Addition by FRS

Addition is 3x15%x2 becomes 2x1+x2

or, in more details, 203x15%2 pecomes 2x1+x2 3050
2/3
2/5

Note that these systems are sometimes presented as
rewriting rules of the form

bx —» ax

meaning that a number that has can be factored as bx
can have the factor b replaced by an a.
The previous rules would then be written

3x > 2Xx
5x —» 2Xx

11/26/19 COT 4210 © UCF 245



Limited Subtraction by FRS

Subtraction is 3*15%2 becomes 2max(0.x1-x2)

35x -5 x
3Xx — 2Xx
5x —> X

Challenge: How would you do
3x15x2 becomes 2/x1-x2] 7
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Ordering of Rules

* The ordering of rules are immaterial for the
addition example, but are critical to the workings
of limited subtraction.

 |n fact, if we ignore the order and just allow any
applicable rule to be used we get a form of non-
determinism that makes these systems
equivalent to Petri nets.

 The ordered kind are deterministic and are
equivalent to a Petri net in which the transitions
are prioritized.
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Why Deterministic?

To see why determinism makes a difference, consider

3-5x - Xx
3x — 2x
5x - Xx

Starting with 135 = 3351, deterministically we get
135= 9=6=4=22
Non-deterministically we get a larger, less selective set.
135= 9=6=4=22
135= 90=60=40=8=23
135= 45=3=2=21
135= 45=15=>1=20
135= 45=15=5=1=20
135= 45=15=3=2=21
135= 45=9=6=4=22
135= 90=60=40=8=23

This computes 22 where 0 < z < desired answr. Think about it.
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More on Determinism

In general, we might get an infinite set
using non-determinism, whereas
determinism might produce a finite set. To

see this consider a system
2X — X

2X — 4x
starting with the number 2.
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Sample RM and FRS

Present a Register Machine that computes IsOdd. Assume R2=x;
at termination, set R1=1 if x is odd; 0 otherwise.

1. DEC2[2, 4]
2. DEC2[1, 3]
3. INC1[4]

4.

Present a Factor Replacement System that computes IsOdd.
Assume starting number is 32x; at termination, result is 2=21if x is
odd; 1= 2° otherwise.

3*3 X —> X
3IX—>2X
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Sample FRS

Present a Factor Replacement System that computes IsPowerOf2.
Assume starting number is 3% 5; at termination, result is 2=2"if x is
a power of 2; 1= 20 otherwise

32*5 x —» 5*7 x

3*5*7 X —> X

35 x> 2x

7T X —> 711 X

7"11 x —> 3*11 x

11x—>5x

S XX

7 X—> X
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Primitive Recursive

An Incomplete Model



Basis of PRFs

* The primitive recursive functions are defined by
starting with some base set of functions and
then expanding this set via rules that create new
primitive recursive functions from old ones.

* The base functions are:
C.(Xq,.--»X,) = a . constant functions
1{’(x1,...,xn) = X; - identity functions
. aka projection
S(x) = x+1 . an increment function
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Building New Functions

Composition:

If G, H,, ..., H, are already known to be primitive
recursive, then so is F, where

F(Xx4,..-,X,) = G(H4{(X4,--4,X,), «-- 5 Hi(Xq5---,X,))
Iteration (aka primitive recursion):

If G, H are already known to be primitive recursive, then
so is F, where

F(O! X1,...,Xn) = G(X1,...,Xn)
F(y+1, X4,...,X,,) = H(Y, X4,...,X,,, F(Y, X4,..-,X;))

We also allow definitions like the above, except iterating
on y as the last, rather than first argument.
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Addition & Multiplication

Example: Addition
+(0,y) =] 1(y)
+(x+1,y) = H(x,y, +(x,y))
where H(a,b,c) = S(] 3(a,b,c))
Example: Multiplication
*(0,y) = Co(y)

*(x+1,y) = H(x,y,*(x,y))
where H(a,b,c) = +(1 3(a,b,c)J 3(a,b,c))

= b+c =y + *(x,y) = (x+1)*y
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Intuitive Composition

« Any time you have already shown some functions to be
primitive recursive, you can show others are by building
them up through composition

« Example#1: If g and h are primitive recursive functions
(prf) then so is f(x) = g(h(x)). As an explicit example
Add2(x) = S(S(x)) =x+2is a prf

« Example#2: This can also involve multiple functions and
multiple arguments like, if g, h and j are prf's then so is

f(xy) = g(h(x), j(y)) N |
The problem with giving an explicit example here is that
Interesting compositions tend to also involve induction.
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Intuitive Inductions

« A function F can be defined inductively using existing

prf’s. Typically, we have one used for the basis and
another for building inductively.

« Example#1: We can build addition from successor (S)
x+0 = x (formally +(x,0) = 1(x) )
x+y+1 = S(x+y) (formally +(x,y+1) = S(+(x,y) )

« Example#2: We can build multiplication from addition
x*0 =0 (formally *(x,0) = C,)
x*(y+1) = +(x,x7y)) (formally *(x,y+1) = +(x,*(x,y)) )
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Basic Arithmetic

X+ 1:
x + 1 = §(x)
x—-1:
0-1=0
(x+1) -1=x
X +y:
x+0=x
x+ (y+1) = (x+y) + 1
x —y: /I limited subtraction
x—-0=x
X = (y+1) = (x-y) — 1
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2nd Grade Arithmetic

X*y:
x*0=0
x* (y+1) =x*y + x

x!:

o01=1
(x+1)! = (x+1) * x!
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Basic Relations

x == 0:
0==0=1
(y+1)==0=0
X ==y:
x==y = ((x-y) +(y-x)) ==
XSy:
xsy = (x —y) ==
X2Yy:
X2y = ys<Xx
X>y:
x>y = ~(x<y) /* See ~ on next page */
X<y:
X<y = ~(x2y)
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Basic Boolean Operations

~X.
~X = X==

signum(x): 1 if x>0; 0 if x==
~(x==0)

X && y:
x&&y = signum(x*y)

x|ly:
X[ly = ~((x==0) && (y==0))
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Definition by Cases

One case

g(x) it P(x)
f(x) =
h(x) otherwise

f(x) = P(x) * g(x) + (1-P(x)) * h(x)

Can use induction to prove this is true for all k>0, where

g4(x) if P4(x)
d2(x) if Py(x) && ~P4(x)
f(x) =
gk(x) if Py(x) && ~(P1(x) || ... || ~Px.1(x))
h(x) otherwise
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Bounded Minimization 1

f(x)=pz(z=x)[P(z)]if 3 such a z,
= x+1, otherwise
where P(z) is primitive recursive.

Can show f is primitive recursive by
f(0) 1-P(0)

f(x+1) f(x) iIf f(x) < x
x+2-P(x+1)  otherwise
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Bounded Minimization 2

f(x)=pnz(z<x)[P(z)]if 3 such a z,
= X, otherwise
where P(z) is primitive recursive.

Can show f is primitive recursive by
f(0)=0
f(xt1)=pz(z=x)[P(z)]
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Intermediate Arithmetic

x/ly:
x/10=0 . silly, but want a value
xll(y+1) = p z (z<x) [ (z+1)*(y+1) > x ]

X | y: xis a divisor of y
xly = ((yl/lx) * x) ==y
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Primality

firstFactor(x): first non-zero, non-one factor of x.
firstfactor(x)= pz (2sz=<sx)[z|x],
0 if none

isPrime(x):
isPrime(x) = firstFactor(x) == x && (x>1)

prime(i) = i-th prime:

prime(0) = 2

prime(x+1) = u z(prime(x)< z Sprime(x)!+1)[isPrime(z)]
We will abbreviate this as p; for prime(i)
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Exponents

xMy:
x"0 =1

xM(y+1) = x* x"y

exp(x,i): the exponent of p; in number x.
exp(x,i) = pz (z<x) [ ~(pi"*(z+1) [ x) ]
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Pairing Functions

* pair(x,y) = <x,y>=2* (2y +1) - 1
 with inverses

<z>, = exp(z+1,0)

<z>,=(((z+1)112<21 )=1) 1l 2

* These are very useful and can be extended to
encode n-tuples

<x,y,z> = <X, <y,z> > (note: stack analogy)
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Pairing Function is 1-1 Onto

Prove that the pairing function <x,y> = 2x (2y + 1) - 1
is 1-1 onto the natural numbers.
Approach 1:

We will look at two cases, where we use the following
modification of the pairing function, <x,y>+1, which implies
the problem of mapping the pairing function to Z*.
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Case 1 (x=0)

Case 1:

For x =0, <0,y>+1 = 20(2y+1) = 2y+1. But every odd
number is by definition one of the form 2y+1, where y=0;
moreover, a particular value of y is uniquely associated
with each such odd number and no odd number is
produced by 2%(2y+1) when x>0. Thus, <0,y>+1 is 1-1 onto
the odd natural numbers.
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Case 2 (x > 0)

Case 2:

For x > 0, <x,y>+1 = 2%(2y+1), where 2y+1 ranges over all odd number
and is uniquely associated with one based on the value of y (we saw
that in case 1). 2X must be even, since it has a factor of 2 and hence
2%(2y+1) is also even. Moreover, from elementary number theory, we
know that every even number except zero is of the form 2%z, where
x>0, z is an odd number and this pair x,z is unique. Thus, <x,y>+1is 1-
1 onto the even natural numbers, when x>0.

The above shows that <x,y>+1 is 1-1 onto Z*, but then <x,y>is 1-1 onto
N, as was desired.
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u Recursive

4t Model

A Simple Extension to Primitive
Recursive



u Recursive Concepts

 All primitive recursive functions are algorithms

since the only iterator is bounded. That's a clear
limitation.

* There are algorithms like Ackerman’s function
that cannot be represented by the class of
primitive recursive functions.

 The class of recursive functions adds one more

iterator, the minimization operator (u), read “the
least value such that.”
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Ackermann’s Function

A(1, j)=2j forj =1
A(i, 1)=A(i-1, 2) for i 2 2
A(i, j)=A(i-1, A(i, j-1)) for i, j = 2

Wilhelm Ackermann observed in 1928 that this is not a
primitive recursive function.

Ackermann’s function grows too fast to have a for-loop
iImplementation.

The inverse of Ackermann’s function is important to analyze
Union/Find algorithm. Note: A(4,4) is

a super exponential number involving six levels of
exponentiation. a(n) = A'(n, n) grows so slowly that it is less
than 5 for any value of n that can be written using the number
of atoms in our universe.
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Union/Find

e Start with a collection S of unrelated elements —
singleton equivalence classes

* Union(x,y), x and y are in S, merges the class
containing x ([x]) with that containing y ([y])

* Find(x) returns the canonical element of [x]

« Can see if x=y, by seeing if Find(x)==Find(y)
 How do we represent the classes?

* You should have learned that in CS2
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The p Operator

 Minimization:
If G is already known to be recursive, then
so is F, where
F(x1,...,xn) = ny (G(y,x1,...,xn) == 1)

* We also allow other predicates besides
testing for one. In fact any predicate that
IS recursive can be used as the stopping
condition.
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Universal Machine

* In the process of doing this reduction, we
will build a Universal Machine.

* This is a single recursive function with two
arguments. The first specifies the factor
system (encoded) and the second the
argument to this factor system.

* The Universal Machine will then simulate
the given machine on the selected input.
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Encoding FRS

* Let (n, ((a4,b4), (25,b5), ... ,(a,,b,)) be
some factor replacement system, where
(a;,b;) means that the i-th rule is

ax — bx

* Encode this machine by the number F,
2n3a15b17a21 1b2°”p§l;—1pi:p2n+1p2n+2
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Simulation by Recursive # 1

 We can determine the rule of F that applies to x by

RULE(F, x) =unz (1 sz<exp(F, 0)+1) [ exp(F, 2*z-1) | x ]

* Note: if x is divisible by a;, and i is the least integer for which this is
true, then exp(F,2*i-1) = a, where a, is the number of prime factors
of F involving psi.q. Thus, RULE(F,x) = i.

If x is not divisible by any a;, 1<isn, then x is divisible by 1, and
RULE(F,x) returns n+1. That's why we added ps;+1 Pan+2-

« Given the function RULE(F,x), we can determine NEXT(F,x), the
number that follows x, when using F, by

NEXT(F, x) = (x // exp(F, 2*RULE(F, x)-1)) * exp(F, 2*RULE(F, x))
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Simulation by Recursive # 2

* The configurations listed by F, when
started on x, are

CONFIG(F, x, 0) = x

CONFIG(F, x, y+1) = NEXT(F, CONFIG(F, x, y))

* The number of the configuration on which
F halts is

HALT(F, x) = p y [CONFIG(F, x, y) == CONFIG(F, x, y+1)]

This assumes we converge to a fixed point only if we stop
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Simulation by Recursive # 3

* A Universal Machine that simulates an
arbitrary Factor System, Turing Machine,
Register Machine, Recursive Function can

then be defined by
Univ(F, x) = exp ( CONFIG (F, x, HALT (F, x) ), 0)

* This assumes that the answer will be
returned as the exponent of the only even
prime, 2. We can fix F for any given
Factor System that we wish to simulate.
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Undecidability

We Can’t Do It All



Let’'s go over some important facts to this point:

1. Z* denotes the set of all strings over some finite alphabet X

2. | Z* | = |M, where Nis the set of natural numbers = the smallest
infinite cardinal (the countable infinity)

3. Alanguage L over X is a subset of 2*; that is, L € P(X*) = 2*
Here P denotes the power set constructor

4. | L|is countable because L — Z* (thatis, |[L | < | Z*|=|A4])

5. | Z* | < | P(Z*) | (uncountable infinity) implies there are an
uncountable number of languages over a given alphabet, X.

6. A program, P, in some programming language L, can be
represented as a string over a finite alphabet, s that obeys the
rules of constructing programs defined by L. As P € X%, there are
at most a countably infinite number of programs that can be formed

in the language L.
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10.

11.

Each program, P, in a programming language L, defines a function, Fp:
X* — 20" where %, is the input alphabet and X is the output alphabet.

Fp defines an input language P, for which FP is defined (halts and
produces an output). This is referred to as its domain in our terminology
(%, is its universe of discourse). The range of Fp, P, is the set of outputs.
Thatis, Po={y|3axinP,andy = Fp (X) }

Since there are a countable number of programs, P, there can be at most
a countable number of functions Fp and consequently, only a countable
number of distinct input languages and output languages associated with
programs in Lp. Thus, there are only a countable number of languages
(input or output) that can be defined by any program, P.

But, there are an uncountable number of possible languages over any
given alphabet — see 3 and 5.

Thus there must be languages over a given alphabet that have no
descriptions — in terms of a program — or in terms of an algorithm. Thus,
there are only a countably infinite number of languages that are
computable among the uncountable number of possible languages.
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w N

S -

. Programming languages that we use as software developers are in a sense

“complete.” By complete we mean that they can be used to implement all
procedures that we think are computable (definable by a computational
model that we can “agree” covers all procedural activities).

Challenge: Why did | say “agree” rather than “prove”?

We mostly like programs that halt on all input (we call these algorithms), but
we know it's always possible to do otherwise in every programming
language we think is complete (C, C++, C#, Java, Python, et al.)

We can, of course, define programming languages that define only
algorithms.

Unfortunately, we cannot define a programming language that produces all
and only algorithms (all and just programs that always halt).

The above (#5) is one of the main results shown in this course

However, before focusing on #5 we should recall that finite-state, push
down and linear bounded automata are computational models that produce
only algorithms (when we monitor the latter two for loops) — it’s just that
these get us a subset of algorithms.
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Given an arbitrary program P, in some language L, and
an input x to P, will P eventually stop when run with input
X?

The above problem is called the “Halting Problem.”
Book denotes the Halting Problem as Aqy,.

It is clearly an important and practical one — wouldn't it
be nice to not be embarrassed by having your program
run “forever” when you try to do a demo for the boss or
professor? Unfortunately, there’'s a fly in the ointment as
one can prove that no algorithm can be written in L that
solves the halting problem for L.
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We will say that a procedure, f, converges on input x if it eventually
halts when it receives x as input. We denote this as f(x)J..

We will say that a procedure, f, diverges on input x if it never halts
when it receives x as input. We denote this as f(x)7.

Of course, if f(x){ then f defines a value for x. In fact we also say
that f(x) is defined if f(x)¥ and undefined if f(x)T.

Finally, we define the domain of fas {x | f(x)\}.
The range of fis {y | there exists an x, f(x) and f(x) =y }.
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Any programming language needs to have an
associated grammar that can be used to generate all
legitimate programs.

By ordering the rules of the grammar in a way that
generates programs in some lexical or syntactic order,
we have a means to recursively enumerate the set of all
programs. Thus, the set of procedures (programs) is re.

Using this fact, we will employ the notation that ¢, is the

x-th procedure and o,(y) is the x-th procedure with input
y. We also refer to x as the procedure’s index.
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First, we can all agree that any complete model of
computation must be able to simulate programs in its
own language. We refer to such a simulator (interpreter)
as the Universal machine, denote Univ. This program
gets two inputs. The first is a description of the program
to be simulated and the second of the input to that
program. Since the set of programs in a model is re, we
will assume both arguments are natural numbers; the
first being the index of the program. Thus,

Univ(x,y) = ox(y)
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Assume we can decide the halting problem. Then there exists some total
function Halt such that

1 if ox(y) is defined

Halt(x,y)
0 if px(y) is not defined

Now we can view Halt as a mapping from Ninto N by treating its input as a
single number representing the pairing of two numbers via the one-one onto
function pair discussed earlier.

pair(x,y) = <x,y>=2% (2y + 1) — 1

with inverses
<z>; =exp(z+1,1)

<z>,=((z+1)//2<=1 )=-1)/2
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Now if Halt exist, then so does Disagree, where

0 if Halt(x,x) = 0, i.e, if @x(xX) is not defined
Disagree(x) =

uy (y ==y+1) if Halt(x,x) = 1, i.e, if @4(X) is defined

Since Disagree is a program from Ninto N , Disagree can be
reasoned about by Halt. Let d be such that Disagree = [d], then
Disagree(d) is defined < Halt(d,d) =0

< @q4(d) is undefined
< Disagree(d) is undefined

But this means that Disagree contradicts its own existence. Since
every step we took was constructive, except for the original
assumption, we must presume that the original assumption was in
error. Thus, the Halting Problem (A+,) is not solvable.
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While the Halting Problem is not solvable, it is re, recognizable or
semi-decidable.

To see this, consider the following semi-decision procedure. Let P
be an arbltrary procedure and let x be an arbitrary natural number.
Run the procedure P on input x until it stops. If it stops, say “yes.” If
P does not stop, we will provide no answer. This semi-decides the
Halting Problem. Here is a procedural description.

Semi_Decide Halting() {
Read P, x;
P(x);
Print “yes”;
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e Define
W,={x e N| o(nx)}}

« Theorem: A set B is re Iff there exists an n

suchthatB=W,.
Proof. Follows from definition of ¢(n,Xx).

* This gives us a way to enumerate the
recursively enumerable (semi-decidable)
sefts.
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« There are even “practical” problems that are worse than
unsolvable -- they’ re not even semi-decidable.

« The classic non-re problem is the Uniform Halting
Problem, that is, the problem to decide of an arbitrary
effective procedure P, whether or not P is an algorithm.

« Assume that the set of algorithms (TOTAL) can be
enumerated, and that F accomplishes this. Then

F(x) = Fx

where F,, F, F,, ... is a list of indexes of all and only the
algorithms
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Define G(x)=Univ (F(x),x)+1 =@y x)=Fx)+1

But then G is itself an algorithm. Assume it is the g-th one
F(g)=Fy=G
Then, G(g) = F4(g9) +1=G(g) + 1

But then G contradicts its own existence since G would need to be
an algorithm.

This cannot be used to show that the effective procedures are non-
enumerable, since the above is not a contradiction when G(Q) is
undefined. In fact, we already have shown how to enumerate the
(partial) recursive functions.
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* The listing of all algorithms can be viewed

dasS
TOTAL = {f e N| VX ¢; (X){ }

 \We can also note that
TOTAL={f e N| W, = N}, where W;is the
domain of o

e Theorem: TOTAL is not re.
Proof: Shown earlier.
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« To capture all the algorithms, any model of computation
must include some procedures that are not algorithms.

« Since the potential for non-termination is required, every
complete model must have some form of iteration that is
potentially unbounded.

« This means that simple, well-behaved for-loops (the kind
where you can predict the number of iterations on entry
to the loop) are not sufficient. While type loops are
needed, even if implicit rather than explicit.
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Insights



« No generative system (e.g., grammar) can produce
descriptions of all and only algorithms

« No parsing system (even one that rejects by
divergence) can accept all and only algorithms

« Of course, if you buy Church’ s Theorem, the set of all
procedures can be generated. In fact, we can build an
algorithmic acceptor of such programs.
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« How do you achieve divergence, i.e., what are the
various means of unbounded computation in each of
our models?

« GOTO: Turing Machines and Register Machines

« Minimization: Recursive Functions
—  Why not primitive recursion/iteration?

Fixed Point: (Ordered) Factor Replacement Systems
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|t sometimes doesn’'t matter

— Turing Machines, Finite-State Automata,
Linear Bounded Automata

* |t sometimes helps
— Push Down Automata

* |t sometimes hinders
— Factor Replacement Systems, Petri Nets
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Reducibility



 Proofs by contradiction are tedious after you’ ve
seen a few. We really would like proofs that
build on known unsolvable problems to show
other, open problems are unsolvable. The
technigue commonly used is called reduction. It
starts with some known unsolvable problem and
then shows that this problem is no harder than
some open problem in which we are interested.
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We can show that the Halting Problem is no harder than the Uniform
Halting Problem. Since we already know that the Halting Problem is
unsolvable, we would now know that the Uniform Halting Problem is
also unsolvable. We cannot reduce in the other direction since the
Uniform Halting Problem is in fact harder.

Let F be some arbitrary effective procedure and let x be some
arbitrary natural number.

Define F,(y) = F(x), forall y e N

Then F, is an algorithm if and only if F halts on x.

Thus a solution to the Uniform Halting Problem STOTAL) would
provide a solution to the Halting Problem (HALT).
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In all cases below we are assuming our variables are over X.

HALT = { <f.x> | ; (xX)¥ } is unsolvable (undecidable, non-recursive)
TOTAL = {f| vx @; (x)¥ } = {f| W; =N} is not even recursively
enumerable (re, semidecidable)

« Show ZERO = {f| Vx ¢; (x) = 0 } is unsolvable.
<f,x> e HALT iff g(y) = o (X) - ¢ (X) is zero for all y.
Thus, <f,x> € HALT iff g € ZERO (really the index of g).
A solution to ZERO implies one for HALT, so ZERO is unsolvable.

« Show ZERO ={f| Vx ¢; (x) =0 } is non-re.
f € TOTAL iff h(x) = @ (X) - ¢ (X) is zero for all x.
Thus, f e TOTAL iff h € ZERO (really the index of h).
A semi-decision procedure for ZERO implies one for TOTAL, so
ZERO is non-re.
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Reduction and Equivalence

m-1, 1-1, Turing Degrees



 Let A and B be two sets.

 We say A many-one reduces to B,
A < B, if there exists an algorithm f such that
Xe A f(x) eB

* We say that A is many-one equivalent to B,
A=, B, ifA< BandB<, A

« Sets that are many-one equivalent are in some
sense equally hard or easy.
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* The relationship A =, B is an equivalence
relationship (why?)

« If A=, B, we say A and B are of the same many-
one degree (of unsolvability).

« Decidable problems occupy three m-1 degrees:
@&, N, all others.

* The hierarchy of undecidable m-1 degrees is an
infinite lattice (I'll discuss in class)
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One-One Reduction

 Let A and B be two sets.

 We say A one-one reduces to B, A <, B,
iIf there exists a 1-1 algorithm f such that

Xe A f(x) eB

 We say that A is one-one equivalent to B,
A=,B,ifA<,Band B <, A

« Sets that are one-one equivalent are in a strong
sense equally hard or easy.
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One-One Degrees

* The relationship A =, B is an equivalence
relationship (why?)

« If A=, B, we say A and B are of the same one-
one degree (of unsolvability).

» Decidable problems occupy infinitely many 1-1
degrees: each cardinality defines another 1-1
degree (think about it).

* The hierarchy of undecidable 1-1 degrees is an
infinite lattice.
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Turing (Oracle) Reduction

 Let A and B be two sets.

 We say A Turing reduces to B, A <, B, if the
existence of an oracle for B would provide us
with a decision procedure for A.

 We say that A is Turing equivalent to B,
A=B,ifA<BandB <A

« Sets that are Turing equivalent are in a very
loose sense equally hard or easy.
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Turing Degrees

* The relationship A =, B is an equivalence
relationship (why?)

« If A=,B, we say A and B are of the same Turing
degree (of unsolvability).

« Decidable problems occupy one Turing degree.
We really don't even need the oracle.

* The hierarchy of undecidable Turing degrees is
an infinite lattice.
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Complete re Sets

* Anre set Cisre 1-1 (m-1, Turing) complete if,
foranyre set A, A<, (5, , <) C.

 The set HALT is an re complete set (in regard to
1-1, m-1 and Turing reducibility).

* The re complete degree (in each sense of
degree) sits at the top of the lattice of re
degrees.
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« Halt =K, ={<f, x>| ¢;(x) is defined }

* Let A be an arbitrary re set. By definition, there exists an
effective procedure @,, such that dom(@,) = A. Put
equivalently, there exists an index, a, such that A =W,

« X e Aiff x e dom(q,) iff ,(x)V iff <a,x> e K,

« The above provides a 1-1 function that reduces A to K,
(A <4 Kp)

« Thus the universal set, Halt = K, is an re
(1-1, m-1, Turing) complete set.
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. K={f]|of)is defined )

» Define f,(y) by Vy f,(y) = @«x). Let the index of f, be f,.
(Yeah, that’ s overloading.)

» <fx> e K, iff x € dom(ey) iff Vy[@y (y)¥] implies f, € K.
» <fx> ¢ K, iff x & dom(qy) iff Vy[@y (y) T] implies f, ¢ K.

« The above provides a 1-1 function that reduces K, to K.

« Since K, is an re (1-1, m-1, Turing) complete set and K is
re, then Kis also re (1-1, m-1, Turing) complete.
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Reduction and Rice’s



Either Trivial or Undecidable

« Let P be some set of re languages, e.g. P = {L | L is infinite re }.

 We call P a property of re languages since it divides the class of all
re languages into two subsets, those having property P and those
not having property P.

« P is said to be trivial if it is empty (this is not the same as saying P
contains the empty set) or contains all re languages.

« Trivial properties are not very discriminating in the way they divide
up the re languages (all or nothing).
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Rice’s Theorem

Rice’s Theorem: Let P be some non-trivial
property of the re languages. Then

Lp = { x| dom [x] is in P (has property P) }
IS undecidable.

Note that membership in Ly is based purely on
the domain of a function, not on any aspect of its
Implementation.
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Rice’s Proof-1

Proof: We will assume, wlog, that P does not
contain @. If it does we switch our attention to

the complement of P. Now, since P is non-
trivial, there exists some language L with
property P. Let [r] be a recursive function
whose domain is L (r is the index of a semi-
decision procedure for L). Suppose P were
decidable. We will use this decision procedure
and the existence of r to decide K,.
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Rice’s Proof-2

First we define a function F, , , for r and each
function ¢, and input y as follows.

Fexy(Z)=0o(x,y)+o(r,z)
The domain of this function is L if ¢, (y)
converges, otherwise it's @. Now if we can
determine membership in Lp , we can use this
algorithm to decide K, merely by applying it to
F.xy- An answer as to whether or not F,, , has
property P is also the correct answer as to
whether or not ¢, (y) converges.

11/26/19 COT 4210 © UCF 320



Rice’s Proof-3

Thus, there can be no decision procedure for P.
And consequently, there can be no decision

procedure for any non-trivial property of re
languages.

Note: This does not apply if P is trivial, nor does
it apply if P can differentiate indices that
converge for precisely the same values.
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/O Properties

* An |/O property, &, of indices of recursive function is one
that cannot differentiate indices of functions that produce
precisely the same value for each input.

« This means that if two indices, f and g, are such that ox
and @4 converge on the same inputs and, when they
converge produce premsely the same result then both f
and g must have property &, or neither one has this

property.

* Note that any I/O property of recursive function indices
also defines a property of re languages, since the
domains of functions with the same 1/O behavior are

equal. However, not all properties of re languages are
I/O properties.
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Strong Rice’s Theorem

Rice’s Theorem: Let & be some non-trivial I/O
property of the indices of recursive functions.
Then

S, ={x| ¢, has property 7) }
IS undecidable.

Note that membership in S, is based purely on
the input/output behavior of a function, not on
any aspect of its implementation.
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Strong Rice’s Proof

* Given x, vy, r, where r is in the set
S, = {f | s has property 7},
define the function

fry.r(Z) = 0k(Y) - 0,(y) + 0,(2).

* foyr(2) = @2) if oY)V 5 = ¢ if @, (y)T .
Thus, e.(y) iff f,, . has property 2, and so

K,<S,.
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Rice’s Picture Proof

’ o _(y)
y § I
i vzf @70 @ Ife
rng(f r )=rng(e_ )|f<|> (Y)¥
— o dom(fx’y’r) dom((p DIf <px(y)¢
z > °r >
dom(fx )=0 |f(p (y)t
rg(f, Y=o it o_)1
Black is for standard Rice’s Theorem; 27 f y(z)zq) (2) If 0, W)t
Black and Red are needed for Strong Version X,Y,F

Blue is just another version based on range
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Weak Rice’s Theorems

Weak Rice’s Theorem1: Let 9 be some non-trivial I/0
property of the indices of recursive functions. Then

S, ={ x| dom(p,) has property ) }
IS undecidable.
dom(f, ) = dom(e,) if o, (YN ; = ¢ if @.(y)T
Weak Rice’s Theorem2: Let 9 be some non-trivial I1/0O
property of the indices of recursive functions. Then

S, = { x| range(op,) has property 7) }
IS undecidable.

range(fy, ) = range(o,) if o (yN ; = ¢ if o,(y)T
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STP Predicate/VALUE Function

« STP(f,x1,...,xn,t) is a predicate defined to be true iff
¢¢(x1,...,xn) converges in at most t steps.

« STP can be shown to be a prf, e.g.,
STP(f,x1,...,xn,t) = CONFIG(f,x1,...,xn,t) ==
CONFIG(f,x1,...,xn,t+1)

 VALUE(f,x1,...,xn,t) is a function that is meaningful only
if STP(f,x1,...,xn,t). In this case, it is f(x1,...,xn). If
~STP(f, x1,...,xn, t) then VALUE(f, x1,...,xn, t) is
defined but meaningless. VALUE is also a prf, e.qg.,
VALUE(f,x1,...,xn,t) = exp(CONFIG( f,x1,...,xn,t), 0)
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Assignment # 8

Known Results:
HALT = { <fx> | f(x){ } is re (semi-decidable) but undecidable
TOTAL ={ f| Vx f(x)¥ } is non-re (not even semi-decidable)

1.

2.
3.

4.
5.
6.

Use reduction from HALT to show that one cannot decide HasOdd where
HasOdd = { f | range(f) contains an odd number }

Show that HasOdd reduces to HALT. (1 plus 2 show they are equally hard)

Use Reduction from TOTAL to show that IsAllOdds is not even re, where
IsAllOdds = { f | range(f) = Set of all odd natural numbers }

Show IsAllOdd reduces to TOTAL. (3 plus 4 show they are equally hard)
Use Rice’s Theorem to show that HasOdd is undecidable
Use Rice’s Theorem to show that IsAllOdd is undecidable

Due: Thursday, Nov. 14, 11:59 PM (use Webcourses to turn in)
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Recursively Enumerable

Properties of re Sets



« Some texts define re in the same way as | have defined
semi-decidable.

S ¢ Nis semi-decidable iff there exists a partially
computable function g where

S={xe N|g(xN}

| prefer the definition of re that says
S c Nisre iff S = & or there exists an algorithm f where

S={y|Ixf(x)==y}
« We will prove these equivalent. Actually, f can be a
primitive recursive function. (described briefly in class)
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Semi-Decidable Implies re

Theorem: Let S be semi-decided by Gg. Assume
Gg is the gg function in our enumeration of
effective procedures. If S = @ then S is re by
definition, so we will assume wlog that there is
some a € S. Define the enumerating algorithm
Fs by
Fs(<x,t>)= x*STP(g,, x, t)

ta* (1-STP(gs, x, t))

Note: Fg is primitive recursive and it enumerates
every value in S infinitely often.
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re Implies Semi-Decidable

Theorem: By definition, S is re iff S == @ or there
exists an algorithm Fg, over the natural numbers
&, whose range is exactly S. Define

dy [y==y+1], ifS=0

Ys(x) =
dy [Fs(y)==x], otherwise

This achieves our result as the domain of yg is
the range of Fg, orempty if S == @.
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Domain of a Procedure

Corollary: S is re/semi-decidable iff S is the
domain / range of a partial recursive predicate
Fs.

Proof. The predicate yg we defined earlier to semi-

decide S, given its enumerating function, can be
easily adapted to have this property.

dy [y == y+1], ifS==0

Vs(x) =
x*(3y [Fs(y)==x]), otherwise
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Recursive Implies re

Theorem: Recursive implies re.

Proof:. S is recursive implies there is an algorithm
(predicate) xs (called the characteristic function
for S) such that

S={xe N|xsx)}
Define g<(x) = 3y ( x.(x) ) — diverges if false
Clearly
dom(g,) ={x € N| gs(x)¥ }

={x e N|[xsx)}
=S
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Related Results

Theorem: S is re iff S is semi-decidable.
Proof: That’ s what we proved.

Theorem: S and ~S are both re (semi-decidable)
Iff S (equivalently ~S) is recursive (decidable).
Proof: Let fg semi-decide S and fg semi-decide ~S. We
can decide S by gg
ds(x) = STP(fs, x, ut (STP(fs, x, t) || STP(fs' ,X, t)))
~S is decided by gg' (X) = ~gg(Xx) = 1- gg(x).
The other direction is immediate since, if S is decidable

then ~S is decidable (just complement gg) and hence
they are both re (semi-decidable).
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re Characterizations

Theorem: Suppose S #J then the following are
equivalent:

Sist
Sist
Sist
Sist

O~ ODN-~

Sisre

ne range of a primitive rec. function
ne range of a total recursive function
ne domain of a partial rec. function

ne range/domain of a partial rec. function

whose domain is the same as its range and
which acts as an identity when it converges

11/26/19
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Quantification#1

« S is decidable iff there exists an algorithm yg (called S’ s
characteristic function) such that
X e S < ys(x)
This is just the definition of decidable.

« S isre iff there exists an algorithm Ag where
X € S < It Ag(x,t)
This is clear since, if gg is the index of a procedure that
semi-decides S, then
X € S < 3t STP(gs, X, t)
So, Ag(x,t) = STPgg( X, t ), where STPgg is the STP
function with its first argument fixed.
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Quantification#2

« S is re iff there exists an algorithm Ag such that
X ¢ S o VvVt Ag(x,t)

This is clear since, if gg is the index of the procedure yg that
semi-decides S, then

X ¢ S < ~3Jt STP(gg, X, t) & Vi ~STP(gg, X, t)

So, Ag(x,t) = ~STPgg( X, t ), where STPgg is the STP function
with its first argument fixed.

* Note that this works even if S is recursive (decidable). The
important thing there is that if S is recursive then it may be
viewed in two normal forms, one with existential quantification
and the other with universal quantification.

« The complement of an re set is co-re. A set is recursive
(decidable) iff it is both re and co-re.
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Quantification#3

* The Uniform Halting Problem was already
shown to be non-re. It turns out its complement
Is also not re. In fact, we can (but won't) show
that TOTAL requires an alternation of
quantifiers. Specifically,

f e TOTAL < vx3at (STP(f, x, t))

and this is the minimum quantification we can
use, given that the quantified predicate is
recursive.
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UNIVERSE OF SETS

R
RE E Co-RE
C
NRNC

NonRE = (NRNC u Co-RE) - REC



1. Given that the predicate STP and the
function VALUE are algorithms, show
that we can semi-decide

HZ = { f | ¢o; evaluates to 0 for some input}

Note: STP( f, x, s ) is true Iff @¢(x)
converges in s or fewer steps and, if so,
VALUE(f, x, s) = @(x).
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2. Use Rice’'s Theorem to show that HZ is
undecidable, where HZ is

HZ = { f | ¢o; evaluates to 0 for some input}

3. Redo using Reduction from HALT.
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4. LetP={f |3 x[STP(f, x, x)]}. Why
does Rice’s theorem not tell us anything
about the undecidability of P?
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5. Let S be an re (recursively enumerable), non-
recursive set, and T be an re, possibly
recursive non-empty set. Let

E={z|z=x+y,wherexeSandyeT}.
Answer with proofs, algorithms or

counterexamples, as appropriate, each of the
following questions:

(a) Can E be non re?
(b) Can E be re non-recursive?
(C) Can E be recursive?
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Assignment # 9

Use quantification of an algorithmic predicate to estimate the complexity
(decidable, re, co-re, non-re) of each of the following, (a)-(d):

a) HasDip ={f| for some x,y, where y>x, f(x)| and f(y)| and f(y) < f(x) }
b) HasMax = {f | for some x, where f(x)|, f(y) < f(x), whenever f(y)| }
c) NotlLarge = {f | if xeRange(f) then x<100 }
d) ZeroStart = {f|if x<100 and f(x)| in fewer than 100 steps, then f(x)=0 }
2. Let set A be a non-empty recursive subset of ¥, and let B be an re non-
recursive subset of N. Consider C = { z | z = max(x,y) where xeA & yeB }.

For (a)-(c), either show sets A and B with the specified property or
demonstrate that this property cannot hold.

a) Can C be recursive?
b) Can C be re non-recursive (undecidable)?
c) Can C be non-re?

Due: Thursday, Nov. 21, 11:59PM (use Webcourses to turn in)
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Rewriting Systems



Semi-Thue Systems

* Devised by Emil Post based on earlier
work by Axel Thue

« S = (2, R), where X is a finite alphabet and
R is a finite set of rules of form
o —> B, o, BieX”

 We define =* as the reflexive, transitive
closure of =, where w = X iff w=yaz and
X=ypz, where a — 3
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Simulating Turing Machines

Basically, we need at least one rule for each 4-
tuple in the Turing machine’s description.

The rules lead from one instantaneous
description to another.

The Turing ID aqgap3 is represented b?/ the string
#oqaf#, a being the scanned symbol.

The tuple ga b s leads to
ga — sb

Moving right and left can be harder due to
blanks and the requirement that a and 3 are
minimum length strings containing all non-
blanks.
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Details of Halt(TM) < Word(ST)

- LetM=(Q,{0,1}, T), T is Turing table.
 |fgabs € T, add rule ga — sb
 IfgaRs € T, add rules

glb — 1sb
q1# — 1s0#
cqOb — cOsb
#q0b — #sb
cq0# — c0s0#
— #q0# — #sO0#

a=1, vbe{0,1}
a=1

a=0, vb,ce{0,1}
a=0, vbe{0,1}
a=0, vce{0,1}
a=0

e If qaLs e T, add rules

11/26/19

— bgac — sbac
#gac — #s0ac
bg1# — sb1#
#Q1# — #s01#
bqO# — sb#
#90h — #s0#

Vva,b,ce€{0,1}
va,ce{0,1}
a=1, vbe{0,1}
a=1

a=0, vbe{0,1}
a=0
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Clean-Up

Assume qinit is start state and only one accepting state exists

qaCC
We will start in #1%q,;;0#, seeking to accept x (enter q,..) or
reject (run forever).

Add rules
— Jacc@ = Qacc vae{0,1}
— Bacc = Qace vbe{0,1}

The added rule allows us to “erase” the tape if we accept x.

This means that acceptance can be changed to generating
#QaccH -

The next slide shows the consequences.
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Semi-Thue Word Problem

* Construction from TM, M, gets:

o #1%Qinil0# =y #AaoH iff Xe L(M).
* #QooH =) #1705, 0# iff xe L(M).
* #QooH oy )" #17Qni0# iff xe L(M).

— This is called a Thue system where rules can be
applied in either direction (o <> [3)

« Can recast both Semi-Thue and Thue Systems
to ones over alphabet {0,1}. That is, a binary
alphabet is sufficient for undecidabillity.
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More on Grammars



Grammars and re Sets

* Every grammar lists an re set.

 Some grammars (regular, CFL and CSG)
produce recursive sets.

* Type 0 grammars are as powerful at
generating (producing) re sets as Turing
machines are at enumerating them
(Proof later).
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 Many problems related to grammars can be shown to be
no more complex than the Post Correspondence
Problem (PCP).

« Each instance of PCP is denoted: Given n>0, X a finite
alphabet, and two n-tuples of words

(Xgy oo s Xy ), (Y15 .o, Yp ) OVEr Y, |
does there exist a sequence iy, ..., iy , k>0, 1 =i =<n,
such that

Xi'] Xik=yi1 yik ?
« Example of PCP:

n=3,x={a,b},(aba,bb,a), (bab,b,baa).
Solution 2, 3,1, 2

bb a aba bb = b baa bab b

* In general, PCP is undecidable (no proof will be given)
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ST(Word) < PCP

« Start with Semi-Thue System
—aba > ab;a—>aa; b - a

— Instance of word problem: bbbb =*7 aa
 Convertto PCP over{[,],* a,b,a,b}

bbbb*

[
[

X < X
1

]
*

;

11/26/19

ab

Q)

Q | *

aba

ab
aba

d
d

dd da
a d
a b
b b
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How PCP Construction Works?

* Using underscored letters avoids solutions
that don't relate to word problem instance.
E.g.,

aba a
ab aa
* Top row insures start with [W,*
» Bottom row insures end with W]

* Bottom row matches W,, while top
matches W, , (one is underscored)
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 The essential ideas iIs that we can embed
computational traces in instances of PCP, such
that a solution exists if and only if the
computation terminates.

* Such a construction shows that the Halting
Problem is reducible to PCP and so PCP must
also be undecidable.

* As we will see PCP can often be reduced to
problems about grammars, showing those
problems to also be undecidable.

11/26/19 COT 4210 © UCF 357



 Arbitrary instance of PCP,
P=(Z! n, ((X1, !xn)! (Y1! !yn))
« G=({S,A,B}, %, R, S), where R is:
S—»>A | B

Ao x Al | X [i] 1<i<n
By, BIil | v lil 1<i<n
A =% X, o Xy ik - [ig] k>0
B=*Y,, ... Vi, [iid - [i1] k>0

« Ambiguous if and only if there is a solution to
this PCP instance, P.
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* Problem to determine if arbitrary CFG's
define overlapping languages

» Just take the grammar consisting of all the
A-rules from previous, and a second
grammar consisting of all the B-rules. Call
the languages generated by these
grammars, L, and Lg.

L, N Lg # G, if and only there is a solution
to this PCP instance.
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 Arbitrary instance of PCP,

P=(Z! n, ((x1!"'!xn),(yh""yn))
« G=({S,T}UZ {*}, R, S), where Ris:

S > X SYyR|x TyR 1<isn
aTa —->*T*

*a —>a*

a* —>*a

T — ¥
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* Our only terminal in previous grammar is *.
We get strings of form «4*1, for some j’s if
and only if there is a solution to this PCP
instance. Get @ otherwise.

* Thus, P has a solution iff
-L(G)# O
— L(G) is infinite
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Traces and Grammars



A trace of a machine M, is a word of the form
FXo#BEX EXo# X # . X BEX#

where X, = X1, 0 £i <Kk, X, is a starting configuration and X, is a
terminating configuration.

« We allow some laxness, where the configurations might be encoded
in a convenient manner. Many texts show that a context free
grammar can be devised which approximates traces by either
getting the even-odd pairs right, or the odd-even pairs right. The
goal is then to intersect the two languages, so the result is a trace.
This then allows us to create CFLs L1 and L2, where L1 " L2 # @ ,
just in case the machine has an element in its domain. Since this is
undecidable, the non-emptiness of the intersection problem is also

undecidable. This is an alternate proof to one we already showed
based on PCP.
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Let L1 = L( G1 )={$#Y0#Y1 #Yz#Y3# #YZJ#Y2]+1 #}

where Y, = Y541 ,0<i S j

This checks the even/odd steps of an even length computation.

NOW, let L2=L( G2 )={X0 $ # Xo # X1 # Xz # X3 # X4 #...# X2k_1 # X2k# Zo #}
where X,.1 = Xy, 1 i Sk and Z; is a unique halting configuration.

This checks the odd/steps of an even length computation and includes
an extra copy of the starting number prior to its $. Its final
configuration is an accepting one

Now, consider the quotient of L2/ L1. The only ways a member of L1
can match a final substring in L2 is to line up the $ signs. But then
they serve to check out the validity and termination of the
computation. Moreover, the quotient leaves only the starting point
(the one on which the machine halts.) Thus,

L2 /L1 ={X, | the system halts}.

Since deciding the members of an re set is in general undecidable, we
have shown that membership in the quotient of two CFLs is also
undecidable.
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Now, consider the quotientof L2/ L1 . The only
ways a member of L1 can match a final
substring in L2 is to line up the $ signs. But then
they serve to check out the validity and
termination of the computation. Moreover, the
quotient leaves only the starting number (the
one on which the machine halts.) Thus,

L2 /L1 ={X| the system F halts on zero }.

Since deciding the members of an arbitrary re

set is in general undecidable, we have shown

that membership in the quotient of two CFLs is
also undecidable.
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Traces and Type 0 (PSG)

gercte, it is actually easier to show a simulation of a Turing machine than of a Factor
ystem.

Assume we are given some machine M, with Turing table T (using Post notation). We

assume a tape alphabet of X that includes a blank symbol B.

S

ga
bgax
bga#
#gax
#ga#
#gax
#ga#
bgax
#gax
bga#
#ga#
bga#
#ga#
f

#

11/26/19

N 2 2 2R 2 2 2 A R N R A A

Consider a starting configuration CO. Our rules will be

#CO# where C0 = YqyaX is initial ID

sb ifgabseT

basx ifgaRseT,abxeX

basB# ifgaRseT,abeX

#asx ifgaRseT,axeZ, a¥B

#asB# ifqaRseT,acl, a¥B

#sx# ifgaRseT,xeZ a=B

#sB# ifgaRs eT, a=B

sbax ifgaLseT,abxeX

#sBax ifqaLseT,axel

sba# ifgaLseT,ab ez, a#B

#sBa# ifqaLseT,acz, a#B

sb# ifgaLseT,beZ a=B

#sB# ifgaLseT,a=B

A if f is a final state

A just cleaning up the dirty linen
COT 4210 © UCF

366



CSG and Undecidability

We can almost do anything with a CSG that can be done with a Type 0
grammar. The only thing lacking is the ability to reduce lengths, but we can
throw in a character that we think of as meaning “deleted”. Let’s use the
Iettedr d as a deleted character and use the letter e to mark both ends of a
word.

LetG=(V, T, P,S)be an arbitrary Type 0 grammar.
Define the CSG G' = (VU {S’, D}, Tu{d, e}, S, P’), where P’ is
S - eSe

Dx — xD whenx e VUT

De > ed push the delete characters to far right
a - B where a > 3 € P and |a| < |B]

a - BDk wherea > BePand|a|-|B|=k>0

Clearly, L(G')={ewed"|w e L(G) and m=0 is some integer }

For each w € L(G), we cannot, in general, determine for which values of m,
ewed™ e L(G’). We would need to ask a potentially infinite number of
questions of the form “does e w e d™ € L(G’)” to determine if w € L(G).
That’s a semi-decision procedure.
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Some Consequences

« CSGs are not closed under Init, Final, Mid, quotient with
regular sets and homomorphism (okay for A-free
homomorphism)

 We also have that the emptiness problem is undecidable
from this result. That gives us two proofs of this one
result.

 For Type 0, emptiness and even the membership
problems are undecidable.
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 IsL =, for CSL, L? PCP reduction

« Is L=X*, for CFL (CSL), L? Trace Complement
 IsL,=L,for CFLs (CSLs),L,,L,? L,=2%*

 IsL,cL, for CFLs (CSLs ), L, L,? L,=2*

* Is LinL,=J for CFLs (CSLs ), L,, L,? PCP reduction

* Is L regular, for CFL (CSL), L? Think about it
 IsL,nL, a CFL for CFLs, L,, L,? Think about it
 Is~L CFL, for CFL, L? Think about it
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More Undecidability

* Is CFL, L, ambiguous? PCP

« IsL=L?% L a CFL? Will Do

* Is L,/L, finite, L, and L, CFLs?
Language is any RE set

 MembershipinL,/L,,L,and L, CFLs?
Language is any RE set
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ST(Word) < PSL(Membership)

* Recast semi-Thue system making all
symbols non-terminal, adding Sand T to
non-terminals and terminal set X={a}

G: S - #1%q,,;O#
HQH T
T —> aTl
T > A
. xe L(M) iff £(G) # @ iff £(G) infinite
iff A e £(G)iffa e £(G) iff £(G) = =*
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Consequences for PSG

 Unsolvables
_(G)=0
_(G)==x*
— £(G) infinite
—w e £(G), for arbitrary w
- £(G) 2 £(G2)
_ 1(G) = £(G2)
« Latter two results follow when have
~G2:S—>aS |1 aer (G2)=z*
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L =232*7?

« If Lis regular, then L = X*? is decidable

— Easy — Reduce to minimal state deterministic FSA, ;.
accepting L. L = Z* iff ( is a one-state machine,
whose only state is accepting

e |f L is context free, then L = X*? is undecidable

— The key here is that the complement of a Turing
Machine’ s valid terminating traces is a CFL —
requires just one error which is context free; requiring
all pairs to be correct is a CSL
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L(G) = L(G)2?

 The problem to determine if L = X* is Turing
reducible to the problem to decide if
LeLcL,6solongasLis selected from a
class of languages C over the alphabet X for
which we can decide if X U {A} c L.

« Corollary 1:
The problem “is L e L =L, for L context free
or context sensitive?” is undecidable
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L(G) = L(G)?? is undecidable

Question: Does L ¢ L get us anything new?
—l.e,IsLelL=L"7

Membership in a CFL is decidable.

Claim is that L = X* iff

(1)Xu{A}cL;and

(2)LeL =L

Clearly, if L = £* then (1) and (2) trivially hold.
Conversely, we haveX*c L*=uU o L"c L

— first inclusion follows from (1); second
from (2)as Le L =L implies L1 =Ln, n>0
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Computational Complexity

Limited to Concepts of P and NP
COT6410 covers much more



« Complexity seeks to categorize problems
as easy (polynomial) or hard (exponential
or even worse). Some parts focus on time;
others on space.

« Computability seeks to categorize
problems as algorithmically solvable or
not.

 Algorithm Design & Analysis tries to find
the most efficient algorithms to solve
specific problems.
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Decidable — vs — Undecidable
(area of Computability Theory)

Exponential — vs — polynomial
(area of Computational Complexity)

Algorithms for any of these
(area of Algorithm Design/Analysis)
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Two types of problems are of particular interest:

Decision Problems ("Yes/No" answers)

Optimization problems ("best" answers)

(there are other types)
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Interestingly, these usually come in pairs
a decision problem, and
an optimization problem.
Equally easy, or equally difficult, to solve.

Both can be solved in polynomial time, or both require at least
exponential time.
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« Some problems have no algorithm (e. g., Halting
Problem.)

* No mechanical/logical procedure will ever solve all
instances of any such problem!!

« Some problems have only exponential algorithms
(provably so — they must take at least order 2" steps) So
far, only a few have been proven, but there may be
many. We suspect so.

* Provably exponential include

— Towers of Hanoi: we can prove that any algorithm that solves
this problem must have a worst-case running time that is at least
2" - 1.

— List all permutations (all possible orderings) of n numbers.

11/26/19 COT 4210 © UCF 381



Many problems have polynomial algorithms
(Fortunately).

Why fortunately? Because, most exponential
algorithms are essentially useless for problem
iInstances with n much larger than 50 or 60.
We have algorithms for them, but the best of

these will take 100's of years to run, even on
much faster computers than we now envision.
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Problems proven to be in these three groups
(classes) are, respectively,

Undecidable, Exponential, and Polynomial.

Theoretically, all problems belong to exactly
one of these three classes, where Exponential
IS any problem that is not solvable by a
polynomial time algorithm.
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Practically, there are a lot of problems (maybe, most)
that have not been proven to be in any of the classes
(Yet, maybe never will be).

Most currently "lie between" polynomial and
exponential — we know of exponential algorithms,
but have been unable to prove that exponential
algorithms are necessary.

Some may have polynomial algorithms, but we have
not yet been clever enough to discover them.

Linear Programming (real solutions) is O(n3°). That

was shown in early 1980s. Prior technique, Simplex,
has good observed performance and can be shown
polynomial for some subclasses.
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If an algorithm is O(nk), increasing the size of an
instance by one gives a running time that is O((n+1))

That's really not much more.

With an increase of one in an exponential algorithm,
O(2") changes to O(2"*1) = O(2*2n) = 2*0(2") — that is, it
takes about twice as long.
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Technically, the size of an instance is the minimum number of bits
(information) needed to represent the instance — its "length."

This comes from early Formal Language researchers who were
analyzing the time needed to 'recognize' a string of characters as
a function of its length (number of characters).

When dealing with more general problems there is usually a
parameter (number of vertices, processors, variables, etc.) that
is polynomially related to the length of the instance. Then, we
are justified in using the parameter as a measure of the length

(size), since anything polynomially related to one will be
polynomially related to the other.
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But, be careful.

For instance, if the "value" (magnitude) of n is both the
input and the parameter, the 'length’ of the input (number
of bits) is log,(n). So, an algorithm that takes n time is
running in n = 2/092n) time, which is exponential in terms
of the length, log,(n), but linear (hence, polynomial) in
terms of the "value," or magnitude, of n.

It's a subtle, and usually unimportant difference, but it
can bite you.
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* P is the class of decision problems containing all
those that can be solved by a deterministic
Turing machine using polynomial time in the size
of each instance of the problem.

* P contain linear programming over real
numbers, but not when the solution is
constrained to integers.

* P even contains the problem of determining if a
number is prime.
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Given G = (V,E) and two vertices u,veV,

is there a path from u to v?

Just use depth first search starting at u to determine all vertices
reachable from u and see if v is one of them. Can do with undirected
or directed graphs. O(|V|+|E|)

Given two positive integers, n,m,

are n and m relatively prime?

Just run Euclidean algorithm to see if GCD(n,m) = 1.
O(min(log,(n),log,(m)) which is order of the problem representation.

Given a CFG, G = (V,Z,S,R) and a word weX*,

iswin L(G)?

Convert G to CNF and run CKY algorithm, O(|w|?) or if you are really
an algorithm junkie, O(|w|?3728639)
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NP is the class of decision problems solvable in
polynomial time on a non-deterministic Turing machine.

Clearly P < NP. Whether or not this is proper inclusion is
the well-known challenge P = NP?

NP can also be described as the class of decision
problems that can be verified in polynomial time. This is
the most useful version of a definition of NP.

NP can even be described as the class of decision
problems that can be solved in polynomial time when no
a priori bound is placed on the number of processors
that can be used in the algorithm.

An example is the problem to determine if a boolean
expression is satisfiable (more about this later)

11/26/19 COT 4210 © UCF 390



A is NP-Hard if all NP problems polynomial
reduce to A.

 If Ais NP-Hard and in NP, then A is NP-
Complete.

« QSAT (Quantified SAT) is the problem to
determine if an arbitrary fully quantified Boolean
expression is true.

Note: SAT only uses existential.

« QSAT is NP-Hard, but may not be in NP.

 QSAT can be solved in polynomial space
(PSPACE).
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A decision problem, C, is NP-complete if:
— Cisin NP and
— C is NP-hard. That is, every problem in NP is polynomially
reducible to C.
D polynomially reduces to C means that there is a deterministic
polynomial-time many-one algorithm, f, that transforms each

instance x of D into an instance f(x) of C, such that the answer to f(x)
is YES if and only if the answer to x is YES.

To prove that an NP problem A is NP-complete, it is sufficient to
show that an already known NP-complete problem polynomially
reduces to A. By transitivity, this shows that A is NP-hard.

A consequence of this definition is that if we had a polynomial time
algorithm for any NP-complete problem C, we could solve all
problems in NP in polynomial time. That is, P = NP.

Note that NP-hard does not necessarily mean NP-complete, as a
given NP-hard problem could be outside NP.
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If P = NP then all problems in NP are polynomial
problems.

If P # NP then all NP-C problems are exponential.
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Why should P equal NP?

— There seems to be a huge "gap" between the known
problems in P and Exponential. That is, almost all
known polynomial problems are no worse than n3 or
n4,.

— Where are the O(n%%) problems?? O(n199)? Maybe
they are the ones in NP-Complete?

— It's awfully hard to envision a problem that would
require n'%, but surely they exist?

— Some of the problems in NP-C just look like we
should be able to find a polynomial solution (looks
can be deceiving, though).
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Why should P not equal NP?

— P = NP would mean, for any problem in NP, that it is
just as easy to solve an instance form "scratch," as it
Is to verify the answer if someone gives it to you. That
seems a bit hard to believe.

— There simply are a lot of awfully hard looking
problems in NP-Complete (and Co—NP-Complete)
and some just don't seem to be solvable in polynomial
time.

— Many very smart people have tried for a long time to
find polynomial algorithms for some of the problems
in NP-Complete - with no luck.
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U= {u,, u,,..., u,}, Boolean variables.

(CNF — Conjunctive Normal Form)

C={c, Cy...,C},
conjunction (and-ing) of "OR clauses’

Example clause:

J

Ci - (U4 V U35 VvV ~u18V U3... VvV ~u6)
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« SAT is the problem to decide of an arbitrary
Boolean formula (wff in the propositional
calculus) whether or not this formula is
satisfiable (has a set of variable assignments
that evaluate the expression to true).

« SAT clearly can be solved in time k2", where k is
the length of the formula and n is the number of
variables in the formula.

 What we can show is that SAT is NP-complete,
providing us our first concrete example of an
NP-complete decision problem.
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« An NDTM M accepts w if and only if, run on w, one of its nondeterministic
branches becomes an accepting computation history.

* An accepting computation history is a sequence of configurations
where:
— The first configuration is the initial configuration of M on w.

— Every subsequent configuration is yielded by the previous configuration — that is,
it's a legal move for M.

— The final configuration is an accepting configuration - that is, its state is gaccepr-
» We can use Boolean logical formulas easily to require the first and
last of a configuration history, and the middle one with a bit of

thought. However, first we need to represent the configuration
history in the first place.
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Simulating NDTM

« Givena NDTM, M, and an input w, we need to create a
formula, ¢y, containing a polynomial number of terms
that is satisfiable just in case M accepts w in polynomial
time.

* The formula must encode within its terms a trace of
configurations that includes
— A term for the starting configuration of the TM
— Terms for all accepting configurations of the TM
— Terms that ensure the consistency of each configuration

— Terms that ensure that each configuration after the first follows
from the prior configuration by a single move
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A tableau is an array of tape alphabet
symbols.

It represents a configuration history of one

branch of our NDTM’s nondeterminism.
If the NDTM runs in nk time, the tableau is an
(n* x nk) tableau.

It's big enough downward because, well, the
TM runs in n*.

...and rightward because the TM can only
count to nk.

We assume that every configuration starts and
ends with a # symbol.

Qo | Wy [ Wy | ...|w,|O]|...|] O

Tnk|

We think of our tableau as looking like this in
the “beginning”: the starting configuration
across the top, and the other configurations
blank.

H | H(FH(FH ||| |
H | H(FH(FH || H ||

(We quote “beginning” because SAT isn’t really — nk—

a stateful algorithm, but just go with it for now.)

But we've assumed that we can “represent”

alphabet symbols. How do we do that, in
SAT?
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Consider a set comprised of:
The tape alphabet
The state set
The separator character

C=TuQuU({#}
Consider a cell variable:
Xij.c
Turning this variable on corresponds to
setting cell (i, j) = ¢, for some ¢ € C.

11/26/19

—_
o

Qo

Ol |N|O|OA | |[W[IN |~

-
o

H|IH|HF(HF(H|HE|H (||~

H|H | HF(HF(FH|FH | H | H|HE(HE
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Consider our tableau alphabet:

C=TuQuU({#}

—_
o

Consider a cell and corresponding

Qo

variable:

Xijc

Now we need to make sure the tableau is

consistently encoded.
Create a clause for each cell (i, j).

d)encode (i:j) =

CEC c,decC
c+d

RN

Ol |N|O|OA | |[W[IN |~

The left demands x;; . be true for some c.

H|IH|HF(HF(H|HE|H (||~

RN
o

The right demands x;; . be true for only

H|H | HF(HF(FH|FH | H | H|HE(HE

one C.
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Tableau alphabet: C=T U QuU {#}
Cell variable: Xijc
Create an encoding clause for each cell (i, j).

Gencode(d, ) = l(v xi,j,c> A ( /\ (Xije V xi,j,d))‘

ceC c,decC
c#d

Now repeat the clause across the tableau.
Geells = /\ ¢encode(i:j)
1<i,j<nk

This is our cell formula. It ensures that each
cell in the tableau is assigned a single
symbol.

11/26/19

—_
o

Qo

Ol |N|O|OA | |[W[IN |~

RN
o

H|IH|HF(HF(H|HE|H (||~

H|H | HF(HF(FH|FH | H | H|HE(HE
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(.bencode (i; ]) =

(At

cec c,deC
c¥d

We can create the single-cell
encoding formula in polynomial time
with a |C|? iteration.

Deells = /\ ®encode (i, ))

1<i,jsnk

We can create the entire cell formula
in polynomial time with an n%k
iteration around that.

So we can say that ¢, is satisfied
by, and only by, a properly
encoded tableau, and is created in
polynomial time.

11/26/19

—_
o

Qo

Ol |N|O|OA | |[W[IN |~

RN
o

H|IH|HF(HF(H|HE|H (||~

H|H | HF(HF(FH|FH | H | H|HE(HE
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Starting and accepting are (comparatively) easy.
To start, take the start configuration padded to n*

length with blanks...
S = #qowiws...w, .. .[J# so that | S| = nk

—_
o

Qo

...and require the first row be equal to the start
configuration:

Gstart = /\ [xl,j,sj]

aa

1<jsnk

Then to accept, just require an accept state
somewhere in the tableau.

Ol |N|O|OA | |[W[IN |~

H|IH|HF(HF(H|HE|H (||~

¢accept: \/ [xl',]',CIA]

RN
o

H|H | HF(HF(FH|FH | H | H|HE(HE

1<i,j<nk
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Dstart = /\ lxl,j,sj] ¢accept: \/ [xi,j,qA]

1<jsnk 1s<i,jsnk

112|3|4|5|6|7|8]|9]10

We can generate the start and accept 1| # | qo|w|wo|..|w,|ol..|ol#
formulas in nk and (nk)2 time, both > | # "
polynomial. 3 | # 4
So now we can say that: 4 | # #
dstart IS satisfied by, and only by, a 5| # |2z |2 gal..|o|...|o|#
tableau with the starting configuration |6 | # #
of M on w encoded as its first row, 7| # #
and is created in polynomial time. 8 | # #
...and... 9 | # #

baccept i satisfied by, and only by, a 10] # #

tableau encoding an accepting
configuration as one of its rows, and
is created in polynomial time.
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Now, for transitions. Recall the discussions
we had about ID changes being limited to
three characters or six, when looking at
transitions..
A given 2x3 window is legal if it does not
violate our machine’s transition function.
Given the linear sets of states and tape
symbols, and the finite size of 2x3 windows,
we can make a polynomial-sized set of all
legal windows.
Let a sequence A = (ay, ..., ag) be a 2x3
window, with a4 the top left cell, a, the top
middle, etc.

We say that A is legal if it represents a legal

window. Here we have q, a R q;

11/26/19

—_
o

Qo

4

Ol |N|O|OA | |[W[IN |~

RN
o

H|IH|HF(HF(H|HE|H (||~

H|H | HF(HF(FH|FH | H | H|HE(HE
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A given 2x3 window is legal if it does not
violate our machine’s transition function. We
have a polynomial-sized set of all legal
windows.

Let a sequence A = (a,, ..., ag) be a 2x3
window. A is legal if it represents a legal
window.

Now we can come up with a formula to say that
the window top-centered at cell (/, j) is legal.

Xij-1,a;, NXija, NXij+1,a; N
d)legal(l ]) -

xl+1,j—1,a A xi+1,j,a A xi+1,j+1,a
4 5 6
A=(aq,...

is legal

N
w
N
(@)
~
oo
(e}
N
o

Qolal|b|c|la|lo|o|oO

Ol |N|O|OA | |[W[IN |~

Don’t be intimidated by this formula!

It's just counting off the six cells of the
window and demanding that each be equal to
the corresponding cell in some legal window.

H|IH|HF(HF(H|HE|H (||~
H|H | HF(HF(FH|FH | H | H|HE(HE

RN
o
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A given 2x3 window is legal if it does
not violate our machine’s transition
function.

We have a polynomial-sized set of all
legal windows.

Let a sequence A = (a4, ..., a@g) be a
2x3 window. A is legal if it represents
a legal window.

.. Xij-1,a;, NXija, NXij+1,a; N
(plegal(l']) = \/ [ ' ]
)

N
w
N
&)
~
(o)
©
-
o

Qolal|b|c|la|lo|o|oO

Xi+1,j-1,a, N Xi+1,j,as N Xi+1,j+1,a,

A=(a1,...,a6
is legal

Ol |N|O|OA | |[W[IN |~

Since we have a polynomial number of
legal windows, this formula is also
polynomial. So we can say:

Pegal (i, j) is satisfied by, and only by, a
tableau whose window top-centered at
(1, j) is legal; and is created in
polynomial time.
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Windows and Configurations

Consider any upper and lower configuration in the

3(4|5|6 |7

tableau, so that the lower configuration is the one
immediately below — that is, following — the upper.

Qo

-
o

If all the windows top-centered on cells in the upper

configuration are legal, then:

The legality of the windows that don’t involve the state
symbol easily ensures the legality of the configuration

below them.

The window top-centered on the state symbol in the
upper configuration is sufficient to ensure that the state

symbol in the lower configuration makes a legal move.

The upper configuration yields the lower one if

and only if all the windows top-centered on cells

Ol |N|O|OA | |[W[IN |~

HIH|HF(HF(H|HE|H (||~

in the upper configuration are legal — and that
holds all the way down the tableau.

-
o

H|H | HF(HF(FH|FH | H | H|HE(HE
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Xij-1,a;, NXija, NXij+1,a; N
(plegal(l ]) - . ; ; . .

xl+1,]—1,a AXit1j,a5 NXit1,j+1,a
4 5 6
A=(ay,...

is legal

Pegal (I, j) is satisfied by, and only by, a tableau
whose window top-centered at (j, j) is legal; and
is created in polynomial time.

An upper configuration yields a lower one iff all
the windows top-centered within the upper are
legal.

This holds all the way down the tableau.
Th have: .
eh we have Pmove = /\ (plegal(l'])

And can say dmnove is satisfied by, and only by,
a tableau that does not violate the machine’s
transition function; and is created in
polynomial time.
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10| # #
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1<i ]<nk

¢NDTM = ((pcells A ¢start A ¢accept A (pmove)

11/26/19

We have:

dealls 1S satisfied by, and only by, a properly
encoded tableau.

dsiart 1S Satisfied by, and only by, a tableau
with the starting configuration of M on w
encoded as its first row.

Paccept IS Satisfied by, and only by, a tableau
encoding an accepting configuration as one
of its rows.

dmove 1S Satisfied by, and only by, a tableau
that does not violate the machine’s
transition function.

All are created in polynomial time.
Then éyptm is satisfied by, and only by, a
tableau encoding an accepting

computation history of M on w, and is
created in polynomial time.
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¢NDTM = (¢cells A (l)start A (paccept A (pmove)

onpTm Created from NDTM M and
input w is satisfied by, and only by,
a tableau encoding an accepting
computation history of M on w,
and is created in polynomial time.

This means that:;

SAT accepts ¢nprum if and only if
such a tableau exists...

...if and only if the NDTM we are

encoding into ¢ypty accepts w.
We've just polynomially reduced
every possible NP language to
SAT.

11/26/19

Let’s convince ourselves of that a bit
more.
By definition, any NP language has an
NDTM M that decides it in polynomial
time.
We can decide any NP language
with a result from SAT using the
following algorithm:

On input <M, w>:
Create ¢yp7y from M and w.

Run the decider for SAT on éyptum-

Accept if SAT accepts, reject if it
rejects.

SAT is NP-complete.
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Within a year, Richard Karp added 22 problems to this

special class.

We will focus on:

11/26/19

3-SAT

SubsetSum

Partition

Integer Linear Programming
Vertex Cover
Independent Set

K-Color

Multiprocessor Scheduling
COT 4210 © UCF
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* A problem is in co-NP if its complement is in NP
— this is like co-RE, wrt RE problems.

* An example is the problem to determine if a
Boolean expression is a tautology.

— If the answer to the problem "is B in TAUT ?" is NO,
then 7Ais in SAT.

* A more direct example of a co-NP problem is to
determine if a Boolean expression is self-
contradictory.

— This is the complement of satisfiability.
« Both of the above are co-NP Complete
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« 3-SAT means that each clause has exactly three
terms

 |f one term, e.qg., (p), expand to (pvpvp)
* |f two terms, e.g., (pvq), expand to (pvqvp)
* Any clause with three terms is fine

* |f n >three terms, can reduce to two clauses, one
with three terms and one with n-1 terms, e.qg.,
(p1vp2v...vpn) to
(p1vp2vz) & (p3v...vpnv~z), where z is a new
variable. If n=4, we are done, else apply this
approach again with the clause having n-1 terms
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S ={sq, Sy ..., S}
set of positive integers
and an integer B.

Question: Does S have a subset whose
values sum to B?

No one knows of a polynomial algorithm.

{No one has proven there isn’ t one, either!!}
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Theorem. SAT <p 3SAT
Theorem. 3SAT <p SubsetSum
Theorem. SubsetSum <p Partition

Theorem. Partition <p SubsetSum

Therefore, not only is Satisfiability in NP-Complete, but so is
3SAT, Partition, and SubsetSum.
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Assuming a 3SAT expression (a+~b +c)(~a+ b + ~c)

I
0

11/26/19

a

1

- O O O O O O O O -

b c
0 0

- O O O O O ©O ~ -~ O

1
0 0
0 0
0 1
1 1
1 0
0 1
0 1
0 0
0 0
1 3
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 Partition is polynomial equivalent to SubsetSum

— Letiq, iy, .., I,, G be an instance of SubsetSum. This
instance has answer “yes” iff
i) i oy i s 2°SUM(iy, iy, .., i ) — G,Sum(iy, iy, .., in ) + G
has answer “yes” in Partition. Here we assume that
G < Sum(iy, iy, .., iy ), for, if not, the answer is “no.”

— Letiy, iy, .., i, be an instance of Partition. This instance
has answer “yes” iff
iy iy o i, SUM(iy, by, .., i )/2
has answer “yes” in SubsetSum
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[(15, 17, 27,11,4,12, 33, 5, 6, 21, 2), 57]

« A solutionis 15,17, 11,12, 2

« Sum of all is 153

 Mapping to Partition is

— (15,17, 27,11, 4,12, 33, 5, 6, 21, 2, 306-57, 153+57)
— (15,17, 27,11,4,12, 33, 5, 6, 21, 2, 249, 210)

— (15+17+11+12+2+249) = 306

— (27+4+33+5+6+21+210) = 306

Going other direction map above to
- [(15,17, 27,11, 4,12, 33, 5, 6, 21, 2, 249, 210), 306}
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Integer Linear Programming

« Show for 0-1 integer linear programming by constraining
solution space. Start with an instance of SAT (or 3SAT),
assuming variables v1,..., vn and clauses c1,..., cm

 For each variable vi, have constraintthat 0 < vi < 1

« For each clause we provide a constraint that it must be
satisfied (evaluate to at least 1). For example, if clause cj
isv2 V ~v3 V v5 V v6 then add the constraint
v2+ (1-v3)+vd + v6 = 1

« A solution to this set of integer linear constraints implies
a solution to the instance of SAT and vice versa
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Assignment # 10

1. Recast the decision problem for the Boolean expression
(p+q+~r)(p+~q)(r) as a SubsetSum problem using the construction
discussed in class. Indicate what rows would need to be chosen for a
solution.

2. Recast the SubsetSum problem {7, 17, 4, 11, 6, 2, 7}, G=36 as a Partition
Problem using the construction from class. Indicate what values need
to be chosen to equal 36 for the SubsetSum problem. Indicate the
partitions that evenly divide the Partition Problem you posed.

3. Recast the decision problem for the Boolean expression
(p+q+~r)(p+~q)(r) as a 0,1-Integer Linear Programming problem using
the construction discussed in class. Indicate what binary (0,1) values of
P, g, and r give rise to a solution to the Integer Linear Programming
problem you posed.

Due: Tuesday, Dec. 3, 7:00 PM (use Webcourses). | will post answers
when | get home after class so you cannot miss the deadline.
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VERTEX COVERING (VC)
DECISION PROBLEM IS NP-HARD
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Vertex cover seeks a set of vertices that cover every edge in some
graph

Let I3.sat be an arbitrary instance of 3-SAT. For integers n and m,
U= {U1, Uy, ..., un} and Ci — {Zi1, Zio, Zi3} for1=<is m,

where each z; is either a ui or uy' for some k.

Construct an instance of VC as follows.

For each i, 1 =i =< n, construct two vertices, u; and u;' with an edge
between them.

For each clause C; = {z;1, zi, z;3}, 1 £i £ m, construct three vertices z;,
Z;, and z;; and form a "triangle on them. Each z; is one of the Boolean
variables ui or its complement u,’. Draw an edge between z;; and the
Boolean variable (whichever it is). Each z; has degree 3. Finally, set k
= n+2m.

Theorem. The given instance of 3-SAT is satisfiable if and only if the
constructed instance of VC has a vertex cover with at most k vertices.
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VC Variable Gadget

(—=
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VC Clause Gadget

o ®\@

a+b+~c
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X4V X4 VX)) A (42X VX, VX)) A (RXy VX, VX))
1 1 2 1 2 2 1 2V X3

: ﬂ

Choose a cover that involves n (2) +2m (6) nodes

#nodes = 2(#variables) + 3(#clauses)
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Independent Set

* Independent Set

— Given Graph G = (V, E), a subset S of the vertices is

independent if there are no edges between vertices in
S

— The k-IS problem is to determine for a k>0 and a
graph G, whether or not G has an independent set of
K nodes
* Note there is a related NP-Hard optimization
problem to find a Maximum Independent Set. It
IS even hard to approximate a solution to the

Maximum Independent Set Problem.
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IS (VC) Clause Gadget

o ®\@

a+b+~c




3SAT to IS

(@+~b+c)(~ra+b+~c)(a+b+c), k=3
(k=number of clauses, not variables)

~d ~C

T o

d C
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K-COLOR (KC) DECISION
PROBLEM IS NP-HARD
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Given:
A graph G = (V, E) and an integer k.
Question:

Can the vertices of G be assigned colors
from a palette of size k, so that adjacent
vertices have different colors and use at
most k colors?

3Coloring (3C) uses k=3
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3C Super Gadget
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KC Super + Variables Gadget




KC Clause Gadget
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Consider ~a, ~b, ~c

F but not legal
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Consideral| b, ~c
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Consider ~a, ~b, c
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Consideroneofal| b, c
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Considera, b, c
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KC Gadgets Combined

(u+r~v+w)(v+x+-~y)
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Register Allocation

Liveness: A variable is live if its current assignment may be used at
some future point in a program’s flow

Optimizers often try to keep live variables in registers
If two variables are simultaneously live, they need to be kept in
separate registers

Consider the K-coloring problem (can the nodes of a graph be colored
with at most K colors under the constraint that adjacent nodes must
have different colors?)

Register Allocation reduces to K-coloring by mapping each variable to
a node and inserting an edge between variables that are

simultaneously live

K-coloring reduces to Register Allocation by interpreting nodes as
variables and edges as indicating concurrent liveness

This is a simple mapping because it’s an isomorphism
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PROCESSOR SCHEDULING
IS NP-HARD
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Processor Scheduling

« A Process Scheduling Problem can be described by

m processors Py, Py, ..., P,

processor timing functions S,, S,, ..., S, each describing how the
corresponding processor responds to an execution profile,

additional resources Ry, R,, ..., R, e.g., memory

transmission cost matrix C; (1 <i, j <m), based on proc. data sharing,
tasks to be executed T4, T,, ..., T,

task execution profiles A4, A,, ..., A,

a partial order defined on the tasks such that T; < T; means that T; must
complete before T; can start execution,

communication matrix D;; (1 <i, j < n); D; can be non-zero only if T; <
T;
weights Wy, W,, ..., W,, -- cost of deferring execution of task.
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Complexity Overview

« The intent of a scheduling algorithm is to minimize the sum of
the weighted completion times of all tasks, while obeying the
constraints of the task system. Weights can be made large to
impose deadlines.

 The general scheduling problem is quite complex, but even
simpler instances, where the processors are uniform, there are
no additional resources, there is no data transmission, the
execution profile is just processor time and the weights are
uniform, are very hard.

« In fact, if we just specify the time to complete each task and we
have no partial ordering, then finding an optimal schedule on
two processors is an NP-complete problem. It is essentially the
subset-sum problem.
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2 Processor Scheduling

The problem of optimally scheduling n tasks T4, T,, ..., T, onto 2
processors with an empty partial order < is the same as that of
dividing a set of positive whole numbers into two subsets, such that
the numbers are as close to evenly divided. So, for example, given the
numbers

3,2,4,1

we could try a “greedy” approach as follows:
put 3 in set 1

put 2 in set 2

put 4 in set 2 (total is now 6)

put 1in set 1 (total is now 4)

This is not the best solution. A better option is to put 3 and 2 in one
set and 4 and 1 in the other. Such a solution would have been attained
if we did a greedy solution on a sorted version of the original
numbers. In general, however, sorting doesn’t work.
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2 Processor Nastiness

Try the unsorted list
7,7,6,6,5,4,4,5,4

Greedy (Always in one that is least used)
7,6,5,5=23

7,6,4,4,4=25

Optimal

7,6,6,5=24

7,4,4,4,5=24

Sort it

7,7,6,6,5,5,4,4,4

7,6,5,4,4 =26

7,6,5,4=22

Even worse than greedy unsorted !!
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Heuristics

While it is not known whether or not P = NP?, it
Is clear that we need to “solve” problems that
are NP-complete since many practical
scheduling and networking problems are in
this class. For this reason we often choose to
find good “heuristics” which are fast and
provide acceptable, though not perfect,
answers. The First Fit and Best Fit algorithms
we previously discussed are examples of such
acceptable, imperfect solutions.
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Challenge Problem

Consider the simple scheduling problem where we have a set of independent tasks
running on a fixed number of processors, and we wish to minimize finishing time.

How would a list (first fit, no preemption) strategy schedule tasks with the following IDs
and execution times onto four processors? Answer using Gantt chart.

(T1,4) (T2,1) (T3,3) (T4,6) (T5,2) (T6,1) (T7,4) (T8,5) (T9,7) (T10,3) (T11,4) (2-1/m)

Now show what would happen if the times were sorted non-decreasing. (2-1/m)

Now show what would happen if the times were sorted non-increasing. (4/3-1/3m)
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UNIVERSE OF SETS




Final Exam Topics 1

« Regular languages

— Decision Problems
* Membership
 Emptiness
* Finiteness
o« >*
« Equality
» Containment

— Closure
» Union/Concatenation/Star
 Complement
» Substitution/Quotient, Prefix, Infix, Suffix
* Max/Min
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Final Exam Topics 2

« Context free languages
— Writing a simple CFG
— Decision Problems
* Membership (CKY)
» Emptiness (Reduced grammair)
» Finiteness (Reduced grammar)
* 2* (undecidable)
» Equality (undecidable)
» Containment (undecidable)
— Closure
» Union/Concatenation/Star
* Intersection with Regular
» Substitution/Quotient with Regular, Prefix, Infix, Suffix
— Non-closure
* intersection, complement, quotient, Max/Min
— Pumping Lemma for CFLs
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« Chomsky Hierarchy
(Red involve no constructive questions)
— Regular, CFG, CSG, PSG (type 3 to type 0)
— FSAs, PDAs, LBAs, Turing machines

— Length preservation or increase makes membership
In associated languages decidable for all but PSGs

— CFLs can be inherently ambiguous but that does not
mean a language that has an ambiguous grammar is
automatically inherently ambiguous
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« Computability Theory

— Decision problems: solvable (decidable, recursive), semi-decidable
(recognizable, recursively enumerable/re, generable), non-re

— A setis re iff it is semi-decidable
— If set is re and complement is also re, set is recursive (decidable)
— Halting problem (Ky): diagonalization proof of undecidability
« Set K is re but complement is not
— Set K={f| f(f) converges }
— Algorithms (Total): diagonalization proof of non-re
— Reducibility to show certain problems are not decidable or even non-re
— Kand K, are re-complete — reducibility to show these results

— Rice’ s Theorem: All non-trivial I/O properties of functions are
undecidable (weak and strong versions)

— Use of quantification to discover upper bound on complexity
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Final Exam Topics 5

« Computability Applied to Formal Grammars
(Red only results not constructions that lead to these)

— Post Correspondence problem (PCP)
* Definition
« Undecidability (proof was only sketched and is not part of this course)
» Application to ambiguity and non-emptiness of intersections of CFLs and to non-
emptiness of CSLs
— Traces of Turing computations
* Not CFLs
» Single steps are CFLs (use reversal of second configuration)
* Intersections of pairwise correct traces are traces
« Complement of traces (including terminating traces) are CFL
+ Use to show cannot decide if CFL, L, is =*
 L=X*andL =L? are undecidable for CFLs
— PSG can mimic TM, so generate any re language; thus, membership in PSL is
undecidable, as is emptiness of PSL.

— All re sets are homomorphic images of CSLs (erase fill character)
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« Complexity Theory

11/26/19

Verifiers versus solvers: P versus NP

Definitions of NP: verify in deterministic poly time vs solve in
non-deterministic polynomial time

Co-P and co-NP; NP-Hard versus NP-Complete
Basic idea behind SAT as NP-Complete
Reduction of SAT to 3-SAT to Subset-Sum
Equivalence of Subset-Sum to Partition

Relation of Subset-Sum and Partition to multiprocessor
scheduling

Vertex cover, 3-coloring, register allocation, Independent set, 0-1

Integer Linear Programming

Gadgets for above
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