5 1. Write a Context Free Grammar for the language L, where
 \[L = \{ a^i b^j c^k \mid k = (i - j), \text{ if } i \geq j, \text{ else } k = 0 \} \]. Hint: Splitting into two cases makes your job easier.

 \[
 \begin{align*}
 S & \rightarrow A | C \\
 A & \rightarrow aAc | B \\
 B & \rightarrow aBb | \lambda \\
 C & \rightarrow aCb | cb \quad ? \quad j > i
 \end{align*}
 \]

3 2. Let \(L_1, L_2 \) be Non-Regular CFLs; \(R_1, R_2 \) be Regular; Answer is about \(S \) and there should be just one cell per row that has an \(X \).

<table>
<thead>
<tr>
<th>Definition of (S) / Characterization of (S)</th>
<th>Always Regular</th>
<th>At worst CFL</th>
<th>Might not be CFL</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S = L_1 \cap L_2)</td>
<td></td>
<td>(X)</td>
<td></td>
</tr>
<tr>
<td>(S = R_1 - L_1)</td>
<td>(X)</td>
<td>(X)</td>
<td></td>
</tr>
<tr>
<td>(S = R_1 - R_2)</td>
<td></td>
<td>(X)</td>
<td></td>
</tr>
<tr>
<td>(S \supseteq R_1)</td>
<td>(X)</td>
<td>(X)</td>
<td></td>
</tr>
<tr>
<td>(S \subseteq R_1)</td>
<td></td>
<td>(X)</td>
<td></td>
</tr>
<tr>
<td>(S = L_1 \cap R_1)</td>
<td></td>
<td>(X)</td>
<td></td>
</tr>
</tbody>
</table>

2 3. Which of the following are correct definitions of an ambiguous grammar? In each case, \(w \) is a terminal string. Write \(T(\text{true}) \) or \(F(\text{false}) \) in the underlined area following each statement.

 - There are two distinct parse trees for some string \(w \) derived by the grammar \(F \)
 - There are two distinct derivations of some string \(w \) derived by the grammar \(T \)
 - There are two distinct rightmost derivations of some string \(w \) derived by the grammar \(T \)
 - There are two distinct leftmost derivations of some string \(w \) derived by the grammar \(T \)

4 4. Show that Context-Free Languages are closed under Non-Empty-Left-Right Quotient with Regular Languages. Non-Empty-Left-Right Quotient of a CFL \(L \) and a Regular Language \(R \), both of which are over the alphabet \(\Sigma \), is denoted \(\text{NELRQ}(L, R) \), and defined as

 \[
 \text{NELRQ}(L, R) = \{ y \mid xyz \in L; x, z \in R; \text{ and } y \neq \lambda \}.
 \]

 That is, we select a non-empty substring \(y \) of \(xyz \) in \(L \), provided \(x \) and \(z \) are both in the Regular Language \(R \).

 You may assume substitution \(f(a) = \{ a, a' \} \), and homomorphisms \(g(a) = a' \) and \(h(a) = a, h(a') = \lambda \). Here \(a \in \Sigma \) and \(a' \) is a distinct new character associated with each \(a \in \Sigma \). No justification is required.

 \[
 \text{NELRQ}(L, R) = \left(f(L) \cap g(R) \right) \Sigma^{+} g(R)
 \]
10 5. Consider some language L. For each of (a) and (b), and for each of the three possible complexities of L, indicate whether this is possible (Y or N) and present evidence. Recall that

$max(A) = \{ w \mid w \in A \text{ and for no } x \neq \lambda \text{ does } wx \in A \}$

If you answer Y, you must provide an example language A and the resulting L. In the case of part (b) you must also present a homomorphism σ. If you answer N, state some known closure property that reflects a bound on the complexity of L. Note: I did the first of each of the three parts for you.

a.) $L = max(A)$ where A is context-free, not regular.

Can L be Regular? Circle Y or N.

If yes, show A and argue $max(A)$ is Regular; if no, why not?

YES. Let $A = \{ a^i b^j \mid i, j > 0 \text{ and } j > i \}$

$L = max(A) = \emptyset$, a regular set, as every string in A can be extended with more b's.

Can L be a non-regular CFL? Circle Y or N.

If yes, show A and argue $max(A)$ is a CFL; if no, why not?

$$A = \{ a^n b^n \mid n > 0 \}$$

$$L = max(A) = A = \{ a^n b^n \mid n > 0 \}$$

Can L be more complex that a CFL? Circle Y or N.

If yes, show A and argue $max(A)$ is not a CFL; if no, why not?

$$A = \{ a^i b^i c^k \mid k \leq i \text{ or } k \leq j \}$$

$$L = max(A) = \{ a^i b^i c^k \mid k = \max(i, j) \}$$

L is known (proven) to be a CSL, non-CFL language.

b.) Let σ be a homomorphism from Σ into regular languages, such that, for each $a \in \Sigma$, $\sigma(a) = w_a$, for some string w_a. Let A be a context free, non-regular language and let $L = \sigma(A)$.

Can L be Regular? Circle Y or N.

If yes, show A and σ, and argue $\sigma(A)$ is Regular; if no, why not?

YES. Let $A = \{ a^n b^n \mid n > 0 \}$

Define $\sigma(a) = \lambda$ and $\sigma(b) = \lambda$.

$L = \sigma(A) = \{ \lambda \}$, a regular set.

Can L be a non-regular CFL? Circle Y or N.

If yes, show A and σ, and argue $\sigma(A)$ is a CFL; if no, why not?

Let $A = \{ a^n b^n \mid n > 0 \}$

Define $r(a) = a$ and $r(b) = b$

$L = r(A) = A = \{ a^n b^n \mid n > 0 \}$ which is a CFL

Can L be more complex that a CFL? Circle Y or N.

If yes, show A and σ, and argue $\sigma(A)$ is not a CFL; if no, why not?

CFLs are known to be closed under substitution and homomorphism.
6. Use the Pumping Lemma for CFLs to show that the following language \(L \) is not Context Free.
\[
L = \{ a^n b^{\text{sum}(1..n)} \mid n > 0 \}
\]
Here \(\text{sum}(1..n) = \sum_1^n i \).
Be explicit as to why each case you analyze fails to be an instance of \(L \) and, of course, make sure your cases cover all possible circumstances. I have done the first two steps for you.

Assume \(L \) is Context Free

provides a whole number \(N > 0 \) that is the value associated with \(L \) based on the Pumping Lemma

Choose \(z = a^N b^{(N+1)N/2} \in L \)

\[
z = u^n w x y, \quad |nwxy| \leq N, \quad (nx) > 0 \quad \text{and} \quad
\]

\[
v \geq 0 \quad u^n w x y \in L
\]

\[\]

CASE 1: \(nwxy \) contains only \(b \)'s.

Set \(l = 2 \) then PL says
\[
a^N b^{(N+1)N/2 + (nx)} \in L
\]

But \((nx) > 0 \) and so we have too many \(b \)'s, thus \(u^n w x y \notin L \)

NOTE: Can also use \(i = 0 \)

CASE 2: \(nwxy \) contains at least one \(a \)

Then \(nwxy \) contains at most \(N-1 \) \(b \)'s. Set \(i = 0 \)

In best case, we have \(N+1 \) \(a \)'s

and \((N+1)N/2 + (N-1) b \).

But \(N+1 \) \(a \)'s requires \((N+1)N/2 + (N+1) b \)

\(\text{AND} \quad (N+1)N/2 + (N-1) < (N+1)N/2 + (N+1) \)

So \(u^n w x y \notin L \)

As cases 1 and 2 cover all possibilities

we have a contraction proving \(u^n w x y \notin L \)

In all cases, hence \(L \) is not a CFL.
10 7. Present the CKY recognition matrix for the string **aababb** assuming the Chomsky Normal Form grammar, \(G = (\{ S, T, U, V, W, A, B \}, \{ a, b \}, R, S \)), specified by the rules \(R \):

```
S \to \ A T | B U
T \to \ b | B S | A V
U \to \ a | A S | B W
V \to \ T T
W \to \ U U
A \to \ a
B \to \ b
```

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>a</th>
<th>b</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UA</td>
<td>-UA</td>
<td>TB</td>
<td>UA</td>
<td>TB</td>
<td>TB</td>
</tr>
<tr>
<td>2</td>
<td>W</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>V</td>
</tr>
<tr>
<td>3</td>
<td>U</td>
<td>U</td>
<td>T</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>W</td>
<td>S</td>
<td>S</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>U</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A little help

<table>
<thead>
<tr>
<th>Non-Terminal</th>
<th>First Symbol in Rules</th>
<th>Second Symbol in Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>None</td>
<td>T \to B S ; U \to A S</td>
</tr>
<tr>
<td>T</td>
<td>V \to T T</td>
<td>S \to A T ; V \to T T</td>
</tr>
<tr>
<td>U</td>
<td>W \to U U</td>
<td>S \to B U ; W \to U U</td>
</tr>
<tr>
<td>V</td>
<td>None</td>
<td>T \to A V</td>
</tr>
<tr>
<td>W</td>
<td>None</td>
<td>U \to B W</td>
</tr>
<tr>
<td>A</td>
<td>S \to A T ; T \to A V ; U \to A S</td>
<td>None</td>
</tr>
<tr>
<td>B</td>
<td>S \to B U ; T \to B S ; U \to B W</td>
<td>None</td>
</tr>
</tbody>
</table>

Is **aababb** in \(L(G) \)? Yes

What is the order of execution of this approach to determine if some \(w, |w| = N \), is in \(L \)? N^3

What is the algorithmic strategy, e.g., greedy, divide and conquer, dynamic programming, backtracking or randomized, associated with this CKY algorithm called? Dynamic Programming
Consider the CFG $G = (\{S, A, B\}, \{a, b\}, R, S)$ where R is:

- $S \rightarrow SAb | AbBa$
- $A \rightarrow aS | a$
- $B \rightarrow bS | b$

In the PDAs below, you may (and are encouraged) to use a transition diagram where transitions have arcs with labels of form $a, \alpha \rightarrow \beta$ where $a \in \Sigma \cup \{\lambda\}, \alpha, \beta \in \Gamma^*$. Note: This just means that you can use extended stack operations that push or pop arbitrary length strings.

a.) Present a pushdown automaton that parses the language $L(G)$ using a top down strategy.

INITIAL CONTENTS OF STACK = ___

```
\[ q_0, w, S \quad \vdash \quad [q_0, \lambda, x] \]
```

b.) Now, using the notation of IDs (Instantaneous Descriptions, $[q, x, z]$), describe how your PDA in (a) accepts strings generated by G.

c.) Present a pushdown automaton that parses the language $L(G)$ using a bottom up strategy. Note: I am fine with your showing strings that are on top of the stack in either reversed or non-reversed form.

INITIAL CONTENTS OF STACK = ___

```
\[ q_0, \#, S \quad \vdash \quad [q_0, \lambda, \lambda] \]
```

d.) Now, using the notation of IDs (Instantaneous Descriptions, $[q, x, z]$), describe how your PDA in (c) accepts strings generated by G.

```
\[ \Sigma q_j, w_j, \# \quad \vdash \quad \Sigma S, \lambda, \lambda \]
```
3 a.) Consider the context-free grammar $G_1 = (\{ S, A, B \}, \{ 0, 1 \}, R_1, S)$, where R_1 is:

$S \rightarrow AB$
$A \rightarrow 0A0 | \lambda$
$B \rightarrow 1B1 | \lambda$

Remove all λ-rules, except possibly for a start symbol, creating an equivalent grammar G_1'. Show all rules.

$\text{Nullable} = \{S, A, B\}$

\[
\begin{align*}
S' & \rightarrow \lambda | A | B | AB \\
S & \rightarrow A | B | AB \\
A & \rightarrow 0A0 | 100 \\
B & \rightarrow 1B1 | 11
\end{align*}
\]

3 b.) Consider the context-free grammar $G_2 = (\{ S, A, B \}, \{ 0, 1 \}, R_2, S)$, where R_2 is

$S \rightarrow AB | B$
$A \rightarrow 1A0 | 10$
$B \rightarrow A | AA$

Remove all unit rules, creating an equivalent grammar G_2'. Show all rules.

$\text{Unit}(S) = \{ S, \epsilon, A \}; \text{Unit}(A) = \{ A \}; \text{Unit}(B) = \{ B, A \}$

\[
\begin{align*}
S & \rightarrow AB | 1A0 | 10 | AA \\
A & \rightarrow 1A0 | 10 \\
B & \rightarrow AA | 1A0 | 10
\end{align*}
\]
9. c.) Consider the context-free grammar \(G_3 = (\{ S, A, B \}, \{ 0, 1 \}, R_3, S \)), where \(R_3 \) is
\[
S \rightarrow AB \mid BB \\
A \rightarrow 1A0 \\
B \rightarrow 0B1 \mid 01
\]
Remove all non-productive non-terminals, creating an equivalent grammar \(G_3' \). Show all rules.
\[
Productive = \{ S, B \}; \ Unproductive = \{ A \}
\]
\[
S \rightarrow BB \\
B \rightarrow 0B1 \mid 01
\]

9. d.) Consider the reduced context-free grammar \(G_4 = (\{ S, A, B \}, \{ 0, 1 \}, R_4, S \)), where \(R_4 \) is
\[
S \rightarrow AABB \\
A \rightarrow 1B0 \mid 10 \\
B \rightarrow 0A1 \mid 01
\]
Convert an equivalent grammar \(G_4' \). Show all rules.
\[
S \rightarrow \langle AAB \rangle B \\
A \rightarrow \langle 1B \rangle \langle 0 \rangle \mid \langle 1 \rangle \langle 0 \rangle \\
B \rightarrow \langle OA \rangle \langle 1 \rangle \mid \langle 0 \rangle \langle 1 \rangle \\
\langle AAB \rangle \rightarrow \langle AA \rangle B \\
\langle AA \rangle \rightarrow AA \\
\langle 1B \rangle \rightarrow \langle 1 \rangle B \\
\langle OA \rangle \rightarrow \langle 0 \rangle A \\
\langle 0 \rangle \rightarrow 0 \\
\langle 1 \rangle \rightarrow 1
\]
\[
\text{OR} \quad S \rightarrow \langle AA \rangle \langle BB \rangle \\
\langle AA \rangle \rightarrow AA \\
\langle BB \rangle \rightarrow BB
\]