Assignment # 7.1a Sample Key

1. For the following languages, either provide a grammar to show it is a CFL or employ the Pumping Lemma to show it is not

a.) $L = \{ a^i b^j \mid j > 2i \}$

This language is a CFL. A grammar that works is

$S \rightarrow aSbb \mid Sb \mid b$
1. b.) \(L = \{ a^n b^n! \mid n>0 \} \)

PL: Provides \(N>0 \)

We: Choose \(a^N b^N! \in L \)

PL: Splits \(a^N b^N! \) into \(uvwx \), \(|vwx| \leq N \), \(|vx| > 0 \), such that \(\forall i \geq 0 \ uv^iwx^iy \in L \)

We: Choose \(i=2 \)

Case 1: \(vx \) contains only \(b \)'s, then we are increasing the number of \(b \)'s while leaving the number of \(a \)'s unchanged. In this case \(uv^2wx^2y \) is of form \(a^N b^{N+c} \), \(c>0 \) and this is not in \(L \).

Case 2: \(vx \) contains some \(a \)'s and maybe some \(b \)'s. Under this circumstances \(uv^2wx^2y \) has at least \(N+1 \) \(a \)'s and at most \(N!+N-1 \) \(b \)'s. But \((N+1)! = N!(N+1) = N!*N+N \geq N! + N > N!+N-1 \) and so is not in \(L \).

Cases 1 and 2 cover all possible situations, so \(L \) is not a CFL
2. Consider the context-free grammar $G = (\{S\}, \{a, b\}, S, P)$, where P is:

$$S \rightarrow S \ a \ S \ b \ S \ | \ S \ b \ S \ a \ S \ | \ S \ a \ S \ a \ S \ | \ a \ | \lambda$$

Provide the first part of the proof that $L(G) = L = \{w | w \text{ has at least as many } a's \text{ as } b's \}$

That is, show that $L(G) \subseteq L$

To attack this problem we can first introduce the notation that, for a syntactic form α, $\alpha_a = \text{the number of } a's \text{ in } \alpha$, and $\alpha_b = \text{the number of } b's \text{ in } \alpha$. Using this, we show that if $S \Rightarrow^* \alpha$, then $\alpha_b \leq \alpha_a$ and hence that $L(G) \subseteq L$:

A straightforward approach is to show, inductively on the number of steps, i, in a derivation, that, if $S \Rightarrow_i \alpha$, then $\alpha_b \leq \alpha_a$.
Assignment # 7.2 Sample Key

Basis (i=1): Since $S \Rightarrow \alpha$ iff $S \rightarrow \alpha$ and all rhs of S have $\alpha_b \leq \alpha_a$ then the base case holds

IH: Assume if $S \Rightarrow_m \alpha$, then $\alpha_b \leq \alpha_a$, whenever $m \leq n$

IS: Show that if $S \Rightarrow_{n+1} \alpha$, then $\alpha_b \leq \alpha_a$

If $S \alpha$ then $S \Rightarrow_n \beta$ and $\beta \Rightarrow \alpha$

Since G has only one non-terminal S, the rewriting of β to α involves a single application of one of the S-rules. By the I.H., β has the property that $\beta_b \leq \beta_a$. Since a single application of an S rule either adds no b’s or a’s, one a, one a and one b, or two b’s, we have the three following cases:
Assignment # 7.2 Sample key

Case 0: \(\alpha_a = \beta_a \), and \(\alpha_b = \beta_b \)
In which case, using the IH, we have:
\(\beta_b \leq \beta_a \rightarrow \alpha_b \leq \alpha_a \)

Case 1: \(\alpha_b = \beta_b \), and \(\alpha_a = \beta_a + 1 \)
In which case, using the IH, we have:
\(\beta_b \leq \beta_a \rightarrow \alpha_b \leq \alpha_a \)

Case 2: \(\alpha_b = \beta_b + 1 \), and \(\alpha_a = \beta_a + 1 \)
In which case, using the IH, we have:
\(\beta_b \leq \beta_a \rightarrow \alpha_b \leq \alpha_a \)

Case 3: \(\alpha_b = \beta_b \), and \(\alpha_a = \beta_a + 2 \)
In which case, using the IH, we have:
\(\beta_b \leq \beta_a \rightarrow \alpha_b \leq \alpha_a \)