Sample Assignment # 5.1

 For each of the following, prove it is not regular by using the Pumping Lemma or Myhill-Nerode. You must do at least one of these using the Pumping Lemma and at least one using Myhill-Nerode.

```
a. \{a^{2^{k+1}} | k \ge 0\} (note: 2^k+1, so get \{a^2, a^3, a^5, a^9, a^{17}, ...\})
b. \{a^i b^j c^k | i \ge 0, j \ge 0, k \ge 0, if i = 0 \text{ then } j = 2k\}
c. \{xyz | x,y,z \in \{a, b\}^* \text{ and } y = xz\}
```

Sample Assign # 5.1 Answer

1a. $\{a^{2^k+1} | k \ge 0\}$ using P.L.

- 1. Assume that L is regular
- 2. Let **N** be the positive integer given by the Pumping Lemma
- 3. Let **s** be a string $\mathbf{s} = \mathbf{a}^{2^{N+1}} \in \mathbf{L}$
- 4. Since $s \in L$ and $|s| \ge N$, s is split by PL into xyz, where $|xy| \le N$ and |y| > 0 and for all $i \ge 0$, $xy^iz \in L$
- 5. We choose i = 2; by PL: $xy^2z = xyyz \in L$
- 6. Thus, $\mathbf{a^{2^{N+1+|y|}}}$ would be in **L**. This means that there is number in **L** between $\mathbf{a^{2^{N+1}}}$ and $\mathbf{a^{2^{N+1+|y|}}}$, but next number after $\mathbf{2^{N+1}}$ is $\mathbf{2^{N+1}}$. The distance is $\mathbf{2^{N}}$ between these number and $\mathbf{2^{N}}$ is greater than N for all values of N, meaning $\mathbf{a^{2^{N+1+|y|}}}$ cannot be in **L**.
 - This is a contradiction, therefore L is not regular ■

1b. { aⁱb^jc^k | i≥0, j≥0, k≥0, if i=0 then j=2k } using P.L.

- 1. Assume that **L** is regular
- 2. Let N be the positive integer given by the Pumping Lemma
- 3. Let **s** be the string $\mathbf{s} = \mathbf{b}^{2N} \mathbf{c}^{N} \in \mathbf{L}$
- 4. Since $s \in L$ and $|s| \ge N$, s is split by PL into xyz, where $|xy| \le N$ and |y| > 0 and for all $i \ge 0$, $xy^iz \in L$
- 5. We choose $\mathbf{i} = \mathbf{0}$; by PL: $\mathbf{x}\mathbf{y}^0\mathbf{z} = \mathbf{x}\mathbf{z} \in \mathbf{L}$
- 6. Thus, $|b^{2N-|y|}c^N$ would be in L, but it's not since 2N-|y| < 2N
- This is a contradiction, therefore L is not regular ■

Sample Assign # 5.1 Answer

1c. $\{xyz \mid x,y,z \in \{a, b\}^* \text{ and } y = xz\} \text{ using P.L.}$

- 1. Assume that **L** is regular
- 2. Let **N** be the positive integer given by the Pumping Lemma
- 3. Let **s** be the string **s** = $a^{N}ba^{N}b \in L$
- Since s ∈ L and |s| ≥ N, s is split by PL into xyz, where |xy| ≤ N and |y| > 0 and for all i ≥ 0, xyⁱz ∈ L
- 5. We choose i = 0; by PL: $xy^0z = xz \in L$
- 6. Thus, a^{N-|y|}ba^Nb would be in L.

 One b has to be part of x and the other of y, or of y and z. If one b in x then, since N-|y| ≠ N, this is not of the proper form. If the b's are in y and z, then we ecounter the same issue.
- This is a contradiction, therefore L is not regular ■

Sample Assign # 5.1 Answer

1a. $\{a^{2^{k+1}} | k \ge 0\}$ using M.N.

We consider the collection of right invariant equivalence classes $[a^{2^{i+1}}]$, $i \ge 0$.

It's clear that $a^{2^{i+1}} a^{2^{i}} = a^{2^{i+1}+1}$ is in the language, but $a^{2^{i}+1} a^{2^{i}} = a^{2^{i}+2^{i}+1}$ is not as $2^{j}+2^{i}$ is not a power of two when $i \neq j$. To see this, assume wlog that j > i, then the next power of two after 2^{j} is $2^{(j+1)} = 2^{j} + 2^{j} > 2^{j} + 2^{i}$.

This shows that there is a separate equivalence class $[a^{Fib(j)}]$ induced by R_L , for each j > 2. Thus, the index of R_L is infinite and Myhill-Nerode states that L cannot be Regular.

1b. { **a**ⁱ**b**^j**c**^k | **i**≥**0**, **j**≥**0**, **k**≥**0**, **if i=0 then j=2k** } using M.N.

We consider the collection of right invariant equivalence classes $[b^{2i}]$, $i \ge 0$.

It's clear that $\mathbf{b^{2i}c^{i}}$ is in the language, but $\mathbf{b^{2j}c^{i}}$ is not when $\mathbf{j} \neq \mathbf{i}$

This shows that there is a separate equivalence class $[b^{2i}]$ induced by R_L , for each $i \ge 0$.

Thus, the index of R_L is infinite and Myhill-Nerode states that L cannot be Regular.

1c. $\{xyz \mid x,y,z \in \{a, b\}^* \text{ and } y = xz\} \text{ using M.N.}$

We consider the collection of right invariant equivalence classes $[a^jb]$, $i \ge 0$.

It's clear that ajbajb is in the language, but ajbajb is not when j ≠ i

This shows that there is a separate equivalence class $[a^jb]$ induced by R_L , for each $i \ge 0$.

Thus, the index of R_L is infinite and Myhill-Nerode states that L cannot be Regular.

Sample Assign # 5.2

2. Write a regular (right linear) grammar that generates the set of strings denoted by the regular expression $(((01 + 10)^+)(11))^* (00)^*$. You may use extended grammars where rules are of form $\mathbf{A} \to \alpha$ and $\mathbf{A} \to \alpha$ \mathbf{B} , $\alpha \in \Sigma^*$ and \mathbf{A}, \mathbf{B} non-terminals

```
G = ({S,T,U,V}, {0,1}, S, P)
P:
S \rightarrow T | V
T \rightarrow 01T | 10T | 01U | 10U
U \rightarrow 11S
V \rightarrow 00V | \lambda
```

Sample Assign # 5.3

Write a Mealy finite state machine that produces the 2's complement result of subtracting 1101 from a binary input stream (assuming at least 3 bits of input)

Answer

