Sample Assignment # 5

- 1. For each of the following, prove it is not regular by using the Pumping Lemma or Myhill-Nerode. You must do at least one of these using the Pumping Lemma and at least one using Myhill-Nerode.
- a. { a^{2^k+1} | k≥0 } (note: 2^k+1, so get {a², a³, a⁵, a⁹, a¹⁷, … })
- b. { $a^{i}b^{j}c^{k}$ | $i \ge 0$, $j \ge 0$, $k \ge 0$, if i=0 then j=2k }
- c. $\{ xyz \mid x, y, z \in \{a, b\}^* \text{ and } y = xz \}$
- 2. Write a regular (right linear) grammar that generates the set of strings denoted by the regular expression $(((01 + 10)^+)(11))^* (00)^*$. You may use extended grammars where rules are of form $\mathbf{A} \rightarrow \alpha$ and $\mathbf{A} \rightarrow \alpha \mathbf{B}$, $\alpha \in \Sigma^*$ and \mathbf{A}, \mathbf{B} non-terminals
- 3. Write a Mealy finite state machine that produces the 2's complement result of subtracting 1101 from a binary input stream (assuming at least 3 bits of input)