
12/9/19

Assignment # 9.1a Key
1. Use quantification of an algorithmic predicate to estimate the

complexity (decidable, re, co-re, non-re) of each of the following,
(a)-(d):

a)HasDip = { f | for some x and y, y > x, f(x)↓, f(y)↓ and f(y) < f(x) }

∃ <x,y,t>[STP(f,x,t) & STP(f,y,t) & (y>x) & (VALUE(f,y,t) < (VALUE(f,x,t))]
RE

1COT 4210 © UCF

12/9/19

Assignment # 9.1b Key
b)HasMax = { f | for some x, where f(x)↓, f(y) < f(x), whenever f(y)↓ }

∃<x,t> ∀<y,s>[STP(f,x,t) & (STP(f,y,s) ➞ (VALUE(f,y,s) < (VALUE(f,x,t))]
Non-RE, Non-Co-RE

2COT 4210 © UCF

12/9/19

Assignment # 9.1c Key
c) NotLarge = { f | if x∈Range(f) then x<100 }

∀<y,t> [STP(f,y,t) ➞ (VALUE(f,y,t)<100)]
Co-RE

3COT 4210 © UCF

12/9/19

Assignment # 9.1d Key
ZeroStart = { <f,x> | if x<100 and f(x)↓ in fewer than 100 steps, then
f(x)=0 }

∀xx<100 [STP(f,x,99)) ➞ (VALUE(f,x,t)=0)]
Could also state as
(x<100 & STP(f,x,99)) ➞ (VALUE(f,x,t)=0)
REC

4COT 4210 © UCF

12/9/19

Assignment # 9.2 Key
1. Let sets A be recursive (decidable) and B be re non-recursive

(undecidable).
Consider C = { z | max(x,y), where x Î A and y Î B }. For (a)-(c),
either show sets A and B with the specified property or
demonstrate that this property cannot hold.

a) Can C be recursive?
YES. Consider A = N. B = Halt. C = { x | x ≥ min(Halt) }
As Halt is non-empty, it has a min value, MIN, even if we don’t know
what that value is. No value in C can be less than MIN and all values ≥
MIN are in C as A contains every possible value in N.

5COT 4210 © UCF

12/9/19

Assignment # 9.2b Key
b) Can C be re non-recursive?
YES. Consider A = {0}. B = Halt. C = Halt as every value, x, is max(x,0).
Thus, C is clearly re non-recursive.

6COT 4210 © UCF

12/9/19

Assignment # 9.2c Key
c) Can C be non-re?
No. Can enumerate C as follows.
First if A is empty then C is empty and so RE by definition.
If A is non-empty then A is enumerated by some algorithm fA as
recursive sets are RE.
As B is non-recursive RE, then it is non-empty and enumerated by
some algorithm fB.
Define fC by fC(<x,y>) = max(fA(x),fB(y)). fC is clearly an algorithm as it
is the composition of algorithms. The range of fC is then { z | max(x,y),
where x Î A and y Î B } = C and so C must be RE.

7COT 4210 © UCF

