

© UCF EECS 498

Importance of Order
• The relative order of the two rules to

simulate a DEC are critical.
• To test if register r has a zero in it, we, in

effect, make sure that we cannot execute
the rule that is enabled when the r-th
prime is a factor.

• If the rules were placed in the wrong order,
or if they weren't prioritized, we would be
non-deterministic.

10/31/18

© UCF EECS 499

Example of Order
Consider the simple machine to compute
r1:=r2 – r3 (limited)
1. DEC3[2,3]
2. DEC2[1,1]
3. DEC2[4,5]
4. INC1[3]
5.

10/31/18

© UCF EECS 500

Subtraction Encoding
Start with 3x5y7

7 • 5 x ® 11 x
7 x ® 13 x
11 • 3 x ® 7 x
11 x ® 7 x
13 • 3 x ® 17 x
13 x ® 19 x
17 x ® 13 • 2 x
19 x ® x

10/31/18

© UCF EECS 501

Analysis of Problem
• If we don't obey the ordering here, we could take

an input like 35527 and immediately apply the
second rule (the one that mimics a failed
decrement).

• We then have 355213, signifying that we will
mimic instruction number 3, never having
subtracted the 2 from 5.

• Now, we mimic copying r2 to r1 and get 255219 .
• We then remove the 19 and have the wrong

answer.

10/31/18

FACTOR £ RECURSIVE

© UCF EECS 503

Universal Machine
• In the process of doing this reduction, we will

build a Universal Machine.
• This is a single recursive function with two

arguments. The first specifies the factor system
(encoded) and the second the argument to this
factor system.

• The Universal Machine will then simulate the
given machine on the selected input.

10/31/18

© UCF EECS 504

Encoding FRS
• Let (n, ((a1,b1), (a2,b2), … ,(an,bn)) be

some factor replacement system, where
(ai,bi) means that the i-th rule is

aix ® bix
• Encode this machine by the number F,

pppp nnnn

n bababa nn

2212212117532 2211

++-
!

10/31/18

© UCF EECS 505

Simulation by Recursive # 1
• We can determine the rule of F that applies to x by

RULE(F, x) = µ z (1 ≤ z ≤ exp(F, 0)+1) [exp(F, 2*z-1) | x]
• Note: if x is divisible by ai, and i is the least integer for which this is

true, then exp(F,2*i-1) = ai where ai is the number of prime factors
of F involving p2i-1. Thus, RULE(F,x) = i.

If x is not divisible by any ai, 1≤i≤n, then x is divisible by 1, and
RULE(F,x) returns n+1. That’s why we added p2n+1 p2n+2.

• Given the function RULE(F,x), we can determine NEXT(F,x), the
number that follows x, when using F, by

NEXT(F, x) = (x // exp(F, 2*RULE(F, x)-1)) * exp(F, 2*RULE(F, x))

10/31/18

© UCF EECS 506

Simulation by Recursive # 2

• The configurations listed by F, when
started on x, are

CONFIG(F, x, 0) = x
CONFIG(F, x, y+1) = NEXT(F, CONFIG(F, x, y))

• The number of the configuration on which
F halts is

HALT(F, x) = µ y [CONFIG(F, x, y) == CONFIG(F, x, y+1)]
This assumes we converge to a fixed point only if we
stop

10/31/18

© UCF EECS 507

Simulation by Recursive # 3
• A Universal Machine that simulates an arbitrary

Factor System, Turing Machine, Register
Machine, Recursive Function can then be
defined by

Univ(F, x) = exp (CONFIG (F, x, HALT (F, x)), 0)

• This assumes that the answer will be returned
as the exponent of the only even prime, 2. We
can fix F for any given Factor System that we
wish to simulate.

10/31/18

© UCF EECS 508

FRS Subtraction
• 203a5b Þ 2a-b

3*5x ® x or 1/15
5x ® x or 1/5
3x ® 2x or 2/3

• Encode F = 23 315 51 75 111 133 172 191 231

• Consider a=4, b=2
• RULE(F, x) = µ z (1 ≤ z ≤ 4) [exp(F, 2*z-1) | x]

RULE (F,34 52) = 1, as 15 divides 34 52

• NEXT(F, x) = (x // exp(F, 2*RULE(F, x)-1)) * exp(F, 2*RULE(F, x))
NEXT(F,34 52) = (34 52 // 15 * 1) = 3351

NEXT(F,33 51) = (33 51 // 15 * 1) = 32

NEXT(F,32) = (32 // 3 * 2) = 2131

NEXT(F, 2131) = (2131 // 3 * 2) = 22

NEXT(F, 22) = (22 // 1 * 1) = 22

10/31/18

© UCF EECS 509

Rest of simulation
• CONFIG(F, x, 0) = x

CONFIG(F, x, y+1) = NEXT(F, CONFIG(F, x, y))
• CONFIG(F,34 52,0) = 34 52

CONFIG(F,34 52,1) = 3351

CONFIG(F,34 52,2) = 32

CONFIG(F,34 52,3) = 2131

CONFIG(F,34 52,4) = 22

CONFIG(F,34 52,5) = 22

• HALT(F, x)=µy[CONFIG(F,x,y)==CONFIG(F,x,y+1)] = 4
• Univ(F, x) = exp (CONFIG (F, x, HALT (F, x)), 0)

= exp(22,0) = 2

10/31/18

© UCF EECS 510

Simplicity of Universal
• A side result is that every computable

(recursive) function can be expressed in
the form

F(x) = G(µ y H(x, y))

where G and H are primitive recursive.

10/31/18

