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Importance of Order
• The relative order of the two rules to 

simulate a DEC are critical.  
• To test if register r has a zero in it, we, in 

effect, make sure that we cannot execute 
the rule that is enabled when the r-th
prime is a factor.  

• If the rules were placed in the wrong order, 
or if they weren't prioritized, we would be 
non-deterministic.  
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Example of Order
Consider the simple machine to compute 
r1:=r2 – r3 (limited)
1. DEC3[2,3]
2. DEC2[1,1]
3. DEC2[4,5]
4. INC1[3]
5.
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Subtraction Encoding
Start with 3x5y7

7 • 5 x ® 11 x
7 x ® 13 x
11 • 3 x ® 7 x
11 x ® 7 x
13 • 3 x ® 17 x
13 x ® 19 x
17 x ® 13 • 2 x
19 x ® x
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Analysis of Problem
• If we don't obey the ordering here, we could take 

an input like 35527 and immediately apply the 
second rule (the one that mimics a failed 
decrement).  

• We then have 355213, signifying that we will 
mimic instruction number 3, never having 
subtracted the 2 from 5.  

• Now, we mimic copying r2 to r1 and get 255219 . 
• We then remove the 19 and have the wrong 

answer.
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Universal Machine
• In the process of doing this reduction, we will 

build a Universal Machine.  
• This is a single recursive function with two 

arguments.  The first specifies the factor system 
(encoded) and the second the argument to this 
factor system.  

• The Universal Machine will then simulate the 
given machine on the selected input.
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Encoding FRS
• Let (n, ((a1,b1), (a2,b2), … ,(an,bn)) be 

some factor replacement system, where 
(ai,bi) means that the i-th rule is

aix ® bix
• Encode this machine by the number F,

pppp nnnn

n bababa nn

2212212117532 2211

++-
!
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Simulation by Recursive # 1
• We can determine the rule of F that applies to x by

RULE(F, x) = µ z (1 ≤ z ≤ exp(F, 0)+1) [ exp(F, 2*z-1) | x ]
• Note: if x is divisible by ai, and i is the least integer for which this is 

true, then exp(F,2*i-1) = ai where ai is the number of prime factors 
of F involving p2i-1.  Thus, RULE(F,x) = i. 

If x is not divisible by any ai, 1≤i≤n, then x is divisible by 1, and 
RULE(F,x) returns n+1.  That’s why we added p2n+1 p2n+2.

• Given the function RULE(F,x), we can determine NEXT(F,x), the 
number that follows x, when using F, by

NEXT(F, x) = (x // exp(F, 2*RULE(F, x)-1)) * exp(F, 2*RULE(F, x))
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Simulation by Recursive # 2

• The configurations listed by F, when 
started on x, are

CONFIG(F, x, 0) = x
CONFIG(F, x, y+1) = NEXT(F, CONFIG(F, x, y))

• The number of the configuration on which 
F halts is

HALT(F, x) = µ y [CONFIG(F, x, y) == CONFIG(F, x, y+1)]
This assumes we converge to a fixed point only if we 
stop
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Simulation by Recursive # 3
• A Universal Machine that simulates an arbitrary 

Factor System, Turing Machine, Register 
Machine, Recursive Function can then be 
defined by 

Univ(F, x) =  exp ( CONFIG ( F, x, HALT ( F, x ) ), 0)

• This assumes that the answer will be returned 
as the exponent of the only even prime, 2.  We 
can fix F for any given Factor System that we 
wish to simulate.  
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FRS Subtraction
• 203a5b Þ 2a-b

3*5x ® x or 1/15
5x ® x or 1/5
3x ® 2x or 2/3

• Encode F = 23 315 51 75 111 133 172 191 231

• Consider a=4, b=2
• RULE(F, x) = µ z (1 ≤ z ≤ 4) [ exp(F, 2*z-1) | x ]

RULE (F,34 52) = 1, as 15 divides 34 52

• NEXT(F, x) = (x // exp(F, 2*RULE(F, x)-1)) * exp(F, 2*RULE(F, x))
NEXT(F,34 52) = (34 52 // 15 * 1) = 3351

NEXT(F,33 51) = (33 51 // 15 * 1) = 32

NEXT(F,32) = (32 // 3 * 2) = 2131

NEXT(F, 2131) = (2131 // 3 * 2) = 22

NEXT(F, 22) = (22 // 1 * 1) = 22
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Rest of simulation
• CONFIG(F, x, 0) = x

CONFIG(F, x, y+1) = NEXT(F, CONFIG(F, x, y))
• CONFIG(F,34 52,0) = 34 52

CONFIG(F,34 52,1) = 3351

CONFIG(F,34 52,2) = 32

CONFIG(F,34 52,3) = 2131

CONFIG(F,34 52,4) = 22

CONFIG(F,34 52,5) = 22

• HALT(F, x)=µy[CONFIG(F,x,y)==CONFIG(F,x,y+1)] = 4
• Univ(F, x) =  exp ( CONFIG ( F, x, HALT ( F, x ) ), 0)

= exp(22,0) = 2
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Simplicity of Universal
• A side result is that every computable 

(recursive) function can be expressed in 
the form

F(x) = G(µ y H(x, y))

where G and H are primitive recursive. 
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