Equivalence

$$
T M \leq R M \leq F R S \leq R E C \leq T M
$$

Unary Ampulabet with O as Blank

Representing words over larger alphabets

$$
\begin{aligned}
& \sum=\{a, b, c\} \\
& \text { WORD }=a c a b \\
& 0010111010110,0
\end{aligned}
$$

OO SEPARATES WORDS
Thus, we can focus on tape alphabet OF \{1\} WITH BLANK AS O.

Encoding Tm Instatutanedos Description
String Approach

$$
\ldots .001010011 q 70100 \ldots
$$

$$
1010011 q_{7} 01
$$

Record shortest string on right That INCLUDES SCANNED SQUARE AS RIGHTIST NON-BLANK
RECORD SHoRTEST STRING ON LEFT THAT INCLUDES LE FTMOST NON-BLONK Place state 40 left of scanned square
Integer APPROACH

NOTE:
IF FIRST NUMBER IS EVEN, SCANNED SQUARE IS O; IF ODD, THEN 1. SAME FOR RIGHTMOST SYMBOL ON LEFT

TM \leqslant Register Machine
Can Store tm Id in Just THREE REGISTERS
CAN SHIFT LEFT CIA MULTIPLY BY 2 ASSUME $r_{2}=0 ; r_{3}=0$

$$
\begin{aligned}
& x+6 \text {. }
\end{aligned}
$$

CAN SHIFT RIGHT VIA DIVIDE BY 2
DETAILS OF THERM ON NOTES 488-494

$$
R M \leq F R S
$$

ID FOR RM IS

$$
P_{1}^{r_{1}} P_{2}^{r_{2}} \cdots P_{n}^{r_{n}} P_{n+j}
$$

Where r_{k} is contents of Register ak and we are about to execute instrij.

Can simulate by
j. $\operatorname{INCR}[i]$

$$
P_{n+j} x \rightarrow P_{n+i} P_{r} x
$$

J. $\operatorname{DEC}[s, f]$

$$
\begin{aligned}
& f] \\
& P_{n+j} P_{r} x \rightarrow P_{n+s} x \\
& P_{n+j} x \rightarrow P_{n+f} \times
\end{aligned}
$$

Also

$$
P_{n+m+1} x \rightarrow x
$$

for halting condition Details on Pages 495-sol

$$
R_{0}^{0} R_{1}^{\times} R_{2}^{Y} R_{3}^{0} R_{4}^{0} * \mathbb{R}_{0}^{x * Y} R_{1}^{\times} R_{2}^{Y} R_{3}^{0} R_{4}^{0}
$$

1. $\operatorname{DEC}_{2}[2,8]$

$$
\text { 2. } 1 N C \text { Y }[3]
$$

$$
\begin{aligned}
& 13.5 x \rightarrow 17 x ; 13 x \rightarrow 41 x \\
& 17 x \rightarrow 19.11 x \\
& 19.3 x \rightarrow 23 x ; 19 x \rightarrow 31 x \\
& 23 x \rightarrow 29.2 x \\
& 29 x \rightarrow 19.7 x \\
& 31.7 x \rightarrow 37 x ; 31 x \rightarrow 13 x \\
& 37 x \rightarrow 31.3 x \\
& 41.11 x \rightarrow 43 x ; 41 x \rightarrow x \\
& 43 x \rightarrow 41.5 x
\end{aligned}
$$

3. $\operatorname{DEC},[4,6]$

$$
\begin{array}{lll}
3.1 N C & {[5]} \\
4,
\end{array}
$$

5. $\mathrm{NNC}_{3}[3]$
6. $D E C_{3}[7,1]$
7. $\mathrm{NC}_{1},[6]$
8. $\left.\operatorname{DEC}_{4}[9] 0,\right]$
9. $1 N C_{2}[8]$
10.

$$
13 \cdot 3^{x} \cdot 5^{y} \not 2^{x * y} 3^{x} 5^{y}
$$

OR COULD END UP AT $2^{x+y} 3^{x} 5^{r} .47$ OR EVEN $2^{x * 4}$

StATE	Prime
1	13
2.	17
3	19
4	23
5	27
6	31
7	37
8	41
9	43

Register	Prime
0	2
1	3
2	5
3	7
4	11

$$
13 \cdot 3^{x} 5^{Y} \leqslant 2^{x * y} 3^{x} 5^{y}
$$

$$
\left.\begin{array}{l}
13.5 x \rightarrow 17 x \\
13 x \rightarrow 41 x \\
17 x \rightarrow 19.11 x \\
19.3 x \rightarrow 23 x \\
19 x \rightarrow 31 x \\
23 x \rightarrow 29.2 x \\
29 x \rightarrow 19.7 x \\
31.7 x \rightarrow 37 x \\
31 x \rightarrow 13 x \\
37 x \rightarrow 31.3 x \\
41.11 x
\end{array}\right)
$$

STATE	PRIME
1	13
2	17
3	19
4	23
5	29
6	31
7	37
8	41
9	43
REGISTER PRIME	
0	2
1	3
2	5
3	7
4	11

Importance of Order

- The relative order of the two rules to simulate a DEC are critical.
- To test if register \mathbf{r} has a zero in it, we, in effect, make sure that we cannot execute the rule that is enabled when the r-th prime is a factor.
- If the rules were placed in the wrong order, or if they weren't prioritized, we would be non-deterministic.

Example of Order

Consider the simple machine to compute r1:=r2 - r3 (limited)

1. DEC3[2,3]
2. DEC2[1,1]
3. DEC2[4,5]
4. INC1[3]
5.

Subtraction Encoding

Start with $3 \times 5 \times 7$

$7 \cdot 5 \mathrm{x}$	$\rightarrow 11 \mathrm{x}$
7 x	\rightarrow
13 x	
$11 \cdot 3 \mathrm{x}$	$\rightarrow 7 \mathrm{x}$
11 x	\rightarrow
$13 \cdot 3 \mathrm{x}$	$\rightarrow 17 \mathrm{x}$
13 x	$\rightarrow 19 \mathrm{x}$
17 x	$\rightarrow 13 \cdot 2 \mathrm{x}$
19 x	$\rightarrow \mathrm{x}$

Analysis of Problem

- If we don't obey the ordering here, we could take an input like $\mathbf{3 5}^{5} 5^{27}$ and immediately apply the second rule (the one that mimics a failed decrement).
- We then have $\mathbf{3 5}^{\mathbf{5}} \mathbf{2 1 3}$, signifying that we will mimic instruction number 3, never having subtracted the 2 from 5.
- Now, we mimic copying r2 to r1 and get $\mathbf{2 5}^{5219}$.
- We then remove the 19 and have the wrong answer.

FACTOR \leq RECURSIVE

Universal Machine

- In the process of doing this reduction, we will build a Universal Machine.
- This is a single recursive function with two arguments. The first specifies the factor system (encoded) and the second the argument to this factor system.
- The Universal Machine will then simulate the given machine on the selected input.

Encoding FRS

- Let ($\mathrm{n},\left(\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right),\left(\mathrm{a}_{2}, \mathrm{~b}_{2}\right), \ldots,\left(\mathrm{a}_{\mathrm{n}}, \mathrm{b}_{\mathrm{n}}\right)\right)$ be some factor replacement system, where $\left(\mathbf{a}_{\mathbf{i}}, \mathbf{b}_{\mathbf{i}}\right)$ means that the \mathbf{i}-th rule is

$$
a_{i} x \rightarrow b_{i} x
$$

- Encode this machine by the number \mathbf{F},

$$
2^{n} 3^{a_{1}} 5^{b_{1}} 7^{a_{2}} 11^{b_{2}} \cdots p_{2 n-1}^{a_{n}} p_{2 n}^{b_{n}} p_{2 n+1} p_{2 n+2}
$$

Simulation by Recursive \# 1

- We can determine the rule of \mathbf{F} that applies to \mathbf{x} by

$$
\operatorname{RULE}(F, x)=\mu z(1 \leq z \leq \exp (F, 0)+1)\left[\exp \left(F, 2^{*} z-1\right) \mid x\right]
$$

- Note: if \mathbf{x} is divisible by $\mathbf{a}_{\mathbf{i}}$, and \mathbf{i} is the least integer for which this is true, then $\exp \left(F, 2^{*} \mathbf{i - 1}\right)=\mathbf{a}_{\mathbf{i}}$ where $\mathbf{a}_{\mathbf{i}}$ is the number of prime factors of F involving $\mathbf{p}_{2 i-1}$. Thus, $\operatorname{RULE}(\mathbf{F}, \mathbf{x})=\mathbf{i}$.

If x is not divisible by any $a_{i}, \mathbf{1} \leq i \leq n$, then \mathbf{x} is divisible by $\mathbf{1}$, and $\operatorname{RULE}(F, x)$ returns $\mathbf{n + 1}$. That's why we added $p_{2 n+1} p_{2 n+2}$.

- Given the function $\operatorname{RULE}(\mathbf{F}, \mathbf{x})$, we can determine $\operatorname{NEXT}(\mathbf{F}, \mathbf{x})$, the number that follows \mathbf{x}, when using \mathbf{F}, by
$\operatorname{NEXT}(F, x)=\left(x / / \exp \left(F, 2^{*} \operatorname{RULE}(F, x)-1\right)\right){ }^{*} \exp \left(F, 2^{*} \operatorname{RULE}(F, x)\right)$

Simulation by Recursive \# 2

- The configurations listed by F, when started on \mathbf{x}, are
$\operatorname{CONFIG}(F, x, 0)=x$ $\operatorname{CONFIG}(F, x, y+1)=\operatorname{NEXT}(F, \operatorname{CONFIG}(F, x, y))$
- The number of the configuration on which F halts is
$\operatorname{HALT}(F, x)=\mu y[\operatorname{CONFIG}(F, x, y)==\operatorname{CONFIG}(F, x, y+1)]$
This assumes we converge to a fixed point only if we stop

Simulation by Recursive \# 3

- A Universal Machine that simulates an arbitrary Factor System, Turing Machine, Register Machine, Recursive Function can then be defined by
$\operatorname{Univ}(F, x)=\exp (\operatorname{CONFIG}(F, x, \operatorname{HALT}(F, x)), 0)$
- This assumes that the answer will be returned as the exponent of the only even prime, 2. We can fix \mathbf{F} for any given Factor System that we wish to simulate.

FRS Subtraction

- $2^{00} 3^{a b} \Rightarrow 2^{\text {abb }}$
$3^{*} 5 x \rightarrow x$ or $1 / 15$
$5 x \rightarrow x$ or $1 / 5$
$3 x \rightarrow 2 x$ or $2 / 3$
- Encode $F=2^{3} 3^{15} 5^{1} 7^{5} 11^{1} 13^{3} 17^{2} 19^{1} 23^{1}$
- Consider $\mathrm{a}=4, \mathrm{~b}=2$
- RULE(F, x) $=\mu \mathrm{z}(1 \leq \mathrm{z} \leq 4)$ [$\left.\exp \left(F, 2^{*} z-1\right) \mid x\right]$
$\operatorname{RULE}\left(F, 3^{4} 5^{2}\right)=1$, as 15 divides $3^{4} 5^{2}$
- $\operatorname{NEXT}(F, x)=\left(x / / \exp \left(F, 2^{*} \operatorname{RULE}(F, x)-1\right)\right){ }^{*} \exp \left(F, 2^{*} \operatorname{RULE}(F, x)\right)$
$\operatorname{NEXT}\left(F, 3^{4} 5^{2}\right)=\left(3^{4} 5^{2} / / 15 * 1\right)=3^{3} 5^{1}$
$\operatorname{NEXT}\left(F, 3^{3} 5^{1}\right)=\left(3^{3} 5^{1} / / 15 * 1\right)=3^{2}$
$\operatorname{NEXT}\left(F, 3^{2}\right)=\left(3^{2} / / 3^{*} 2\right)=2^{1} 3^{1}$
$\operatorname{NEXT}\left(F, 2^{1} 3^{1}\right)=\left(2^{1} 3^{1} / / 3^{*} 2\right)=2^{2}$
$\operatorname{NEXT}\left(F, 2^{2}\right)=\left(2^{2} / / 1^{*} 1\right)=\mathbf{2}^{2}$

Rest of simulation

- CONFIG(F, $x, 0)=x$ $\operatorname{CONFIG}(F, x, y+1)=\operatorname{NEXT}(F, \operatorname{CONFIG}(F, x, y))$
- CONFIG(F, $\left.3^{4} 5^{2}, 0\right)=3^{4} 5^{2}$

CONFIG(F, $\left.3^{4} 5^{2}, 1\right)=3^{3} 5^{1}$
CONFIG(F, $\left.3^{4} 5^{2}, 2\right)=3^{2}$
CONFIG $\left(F, 3^{4} 5^{2}, 3\right)=2 \mathbf{2 1}^{1}$
CONFIG(F, $\left.\mathbf{3}^{4} 5^{2}, 4\right)=\mathbf{2}^{\mathbf{2}}$
CONFIG(F, $\left.3^{4} 5^{2}, 5\right)=\mathbf{2}^{2}$

- $\operatorname{HALT}(F, x)=\mu y[C O N F I G(F, x, y)==C O N F I G(F, x, y+1)]=4$
- $\operatorname{Univ}(F, x)=\exp (\operatorname{CONFIG}(F, x, \operatorname{HALT}(F, x)), 0)$ $=\exp \left(2^{2}, 0\right)=2$

Simplicity of Universal

- A side result is that every computable (recursive) function can be expressed in the form
$\mathbf{F}(\mathbf{x})=\mathbf{G}(\mu \mathrm{y} \mathbf{H}(\mathbf{x}, \mathrm{y}))$
where \mathbf{G} and \mathbf{H} are primitive recursive.

Recursive \leqslant Turing
S how Base functions Are Turing Computable

$$
\begin{aligned}
& C_{a}^{n}\left(x_{1}, \ldots, x_{n}\right)=a \\
&(R \mid)^{a} R \\
& I_{i}^{n}\left(x_{1}, \ldots, x_{n}\right)=x_{i} \\
& C_{n-i+1} \\
& S(x)=x+1 \quad C_{1} \perp R
\end{aligned}
$$

Now show Turing Computable closed under Composition, Induction and Minimization

Details on Notes Pages 511-518

Universal Machine

Really an interpreter for Programs in some model of COMPUTATION, WRITTEN IN THAT MODEL

$$
U_{\text {rIV }}(x, y)=Q_{x}(y)
$$

where Q_{x} is x-th program in some way of ordering prcorans, egg., lexically.

$$
Q(x, y)=\operatorname{UNN}(x, y)
$$

Halting Problem
RE BUT NOT SOLVABLE
Let f be index of some arbitrary Procedure (Programs can be ordered)
LET X be an arbitrary member of My
Really both f and x are in N
Want to decide if $Q_{f}(x) \downarrow$
Can easily semi-decide by running

$$
\phi(f, x)
$$

When halts, return true, else runs Forever. However, this is not decidable as we see on next page.
Note:

$$
\operatorname{SOHALT}(f, x)=(\underset{\uparrow}{Q}(f, x)=Q(f, x))
$$

IF FAILS TO CONVERGE
THEN SHALT $(f, x) \uparrow$
$\operatorname{Dom}($ SHALT $)=\left\{\langle\xi, x\rangle \mid Q_{f}(x) \downarrow\right\}$

Arming Problem
Assume there exists an Aucorithm Haunt Such ThAT HALT $(x, y)=1$ if $Q_{x}(y) \downarrow$ $=0$ otherwise

Define Disagree by

$$
\begin{aligned}
& \text { Define Disagree by } \\
& \text { Disagree }(x)=\mu y[\operatorname{Halt}(x, x)==0]
\end{aligned}
$$

Note:- if Halt $(x, x)=0$ THEN

$$
\begin{aligned}
& \text { DISAGREE }(x)=0 \\
& \text { IF HALT }(x)=1 \text { THEN } \\
& \text { DISAGREE }(x) \text { i (DIVERGES) }
\end{aligned}
$$

As Disagree is clearly a μ-recursive Function, it is a computable function and IT has AN NDEX, CAL IT $d, Q_{d}=D$
But $D(d) \downarrow$ MF $\operatorname{HALT}(\alpha,(x)=0$

$$
\begin{aligned}
& \text { AF HAL }(\alpha) \uparrow \\
& \text { FF } Q_{d}(d) \uparrow
\end{aligned}
$$

$$
\text { FF } D(d) \uparrow
$$

Contradiction. Thus, halt cannot exist

Enumeration Theoren

Define

$$
\begin{aligned}
& \text { DEFINE } \\
& \omega_{n}=\{x \in \mathbb{N} \mid Q(n, x) \downarrow\} \\
& Q_{n} \text { SEMI-DECIDES } \omega_{n} \text { So }
\end{aligned}
$$

Theorem: A set b is RE ff $\exists n$ SUCH THAT $B=W_{n}$

This allows us to enumerate the RE (semi-decidable) sets

Uniform Hating Problem
aka Total $Q_{c} f$

$$
\begin{aligned}
\text { Total } & =\left\{f \mid Q_{f}\right. \text { is analgortthm } \\
& =\left\{f\left(\forall x Q_{f}(x) \downarrow\right\} \quad \forall x Q_{f}(x) \downarrow\right.
\end{aligned}
$$

Assume Total is Re and A is An 5 enumating algorithm

$$
A(x)=A_{x}
$$

Where $A_{0}, A_{1}, A_{2}, \ldots$ is LIST OF INDICES OF ALL AND ONLY THE ALGORITHMS

Define

$$
\begin{aligned}
G(x) & =\operatorname{Uviv}(A(x), x)+1 \\
& =Q_{A(x)}(x)+1
\end{aligned}
$$

But then G is an algorithm, say the gath one
That is, $A(g)=A g=G$
Thus, $G(g)=\varphi_{A(g)}(g)+1=G(g)+1$
But that is a contradiction since G is AN AZGORITHM
Note: If G were a procedure, this is NOT NEG. A CONTRADICTION - WHY?

This is possible if can list (Rec. Enum.) the Algorithms (Subset of Procedures, Which are enumerable).

More on Total

$$
\begin{aligned}
\text { TotAL } & =\left\{f \in N \mid \forall x Q_{f}(x) \downarrow\right\} \\
& =\left\{f \in N \mid \omega_{f}=N\right\}
\end{aligned}
$$

Our result that total is not re means there is no complete model of computation that does not include procedures that are not algorithms.

That is, no generative system (eg, grammar) can produce descriptions of all and ONLY ALGORITHMS
AND
no parsing system can accept all and ONLY ALGORITHMS
That is, Real Computer languages must SUPPORT INFINITE COMPUTATION (LOOPS)

Ways to Diverge

While hoops
Goto's as in Toms and Rms Minimization as in rec Functions Fixed Pant as in FRS

Non-Determinism in Moders
Helps for PDAs
DOESNIT HELP OR HURT FOR
Finte State Automata
LBAS
Turingmacitines
Weakens for Frs and PetriNets PetriNet

Petri Net (Nondet)
And Concurrency

How Hard is it to
Analyze Perrin Nets?
To determine if some marking
Can eventually arise is in

$$
\text { EXPSPACE }(N)
$$

Solvable, but takes exponential space

$$
\begin{aligned}
& \text { Space } \\
& \text { Time is actually } 2^{2^{N}}
\end{aligned}
$$

IF PRIORITY ADDED TO TRANSITIONS, Peri Nets are complete models of computation.

$$
\begin{aligned}
\text { Total } & =\left\{f \in \mathbb{N} \mid \forall x \varphi_{S}(x) \downarrow\right\} \\
& =\left\{f \in \mathbb{N} \mid W_{S}=\mathbb{N}\right\}
\end{aligned}
$$

is NOT RE.

Two Useful sets
Total (above) is non-re

$$
\text { HaLt }=\{\langle f, x\rangle \mid f(x) \downarrow\}
$$

IS RE, NON-RECURSIVE

Intro to Reduction

$$
A \leqslant_{m} B \text { IF THERE EXISTS }
$$

SOME COMPUTAble Algorithm f \rightarrow

$$
x \in A \Leftrightarrow f(x) \in B
$$

If B is easy to solve THEN SO IS A if f DOES NOT ADD TO COMPUTATIONAL COMPLEXITY
However, if A is known to be HARD (OR EVEN UN SQ, MABLE) AND f does not change the complexity landscape, titan 1 must be hard AT LEAST WITHIN THE ORDER OR SAND A's complexity, if A is unsalable THEN SO IS B.

Notions of Reductions
$A \leq 1 B$ ff \exists an alg. f That is $1-1$ SUCH THAT $x \in A \Leftrightarrow f(x) \in B$

If B is soluble (Semi-decidable) THEN So is A, and each element of A has a unique counterpart in B, $A \leq m B$ IFF \exists AN $A L G$. f THAT IS $m-1$ SUCH THAT $x \in A \Leftrightarrow f(x) \in B$ AgAIN B SOLVABLE (RE) THEN SO IS A unique counterparts are not required So each y $\in B$ may have more than one (but also maybe zero) elements from a that map to IT
\leq AND \leq_{m} SAY NOTHING ABOUT TIME OR SPACE COMPLEXITY OF f.

Reduction
Halt \leqslant Total
LET $\langle f, x\rangle$ be arb, PaIR of Nat Number
Define $f_{x}(y)=f(x) \quad \forall y \in \mathbb{N}$

$$
\begin{aligned}
& \text { Define } f_{x}(y)= \\
& \langle f, x\rangle \in \text { HALT RF }^{\text {IF }} \not \forall_{y}(x) \downarrow f_{x}(y) \downarrow \\
& \text { IF } f_{x} \in \text { Total }
\end{aligned}
$$

Any Algorithm that solves Total Can be used to solve halt,
So hat \leq Total
and since Halt is undec., so is Total
Cannot show Total h halt
as Total is not even re, but halt is

MoreReductions

$$
\text { HALT } \leqslant Z E R O=\left\{f \mid \forall x Q_{f}(x)=0\right\}
$$

LET $\langle f, x\rangle$ BE ARB, PAIR
Define ty $f_{x}(y)=f(x)-f(x)$
$\langle\delta, x\rangle \in$ HALT FF $f(x\rangle \lambda$ INF $f(x)-f(x)=0$
IF $f_{y} f_{x}(y)=0$ IF $f_{x} \in Z \in R O$
SO ZERO IS UNDECIBLE, BUT ITS WORSE

$$
\text { TOTAL } \leq \text { ZERO }
$$

LET f be. ARBITRARY INDEX $(f \in \mathbb{N})$
Define $\forall x g(x)=f(x)-f(x)$
$f \in$ TOTAL IF $\forall x f(x) \downarrow$
If $\forall x-S(x)-f(x)=0$
FF $\quad \forall x g(x)=0$
IF $g \in Z \in R O$

ZERO
total

$$
\begin{aligned}
& \text { TOTAL } \leqslant \text { ZERO } \\
& G_{f}(x)=f(x)-f(x) \\
& f \in \text { TOTAL } \Leftrightarrow G_{f} \in Z E R O \\
& G_{f}(x)=f(x)-f(x)+x
\end{aligned}
$$

$f \in$ TOTAL $\Leftrightarrow G_{f} \in$ IDENTITY
SO TOTALS IDERAITY
Formally, we should say

$$
\varphi_{f}(x)-\varphi_{f}(x)
$$

AND $Q_{f}(x)-\varphi_{f}(x)+x$

Notion of Degrees of Unsolvabimity

IF $A \leq 1 B$ and $B \leq 1$ then
And B have same degree of Complexity. In fact they are in Same 1-1 degree and hence really are tightly coupled
IF $A \leq_{m} B$ and $B \leq_{m} A$ THEN a and bare in same mas degree

For re sets if C is
2. $A \leq 1 C$ FOR All re sets A

1. RE

Then C is 1-1 COMPlete IF C is
2. $A \leq m$ C FOR ALL RE SETS A THEN C is M -1 complete

Re-complete Sets

S IS RE-COMPLETE MF
(a) S is RE
(b) For any re set $T, T \leq S$

WE FOCUS ON \leq_{M} OR EVEN \leq_{1}
For Now

$$
H_{A L T}=K_{0}=\left\{\langle f x\rangle \mid Q_{f}(x) \downarrow\right\} \text { is }
$$

Re-complete
(a) IT IS RE (CAN SEMI-DECIDE)
(b) Let T be an arb re set
by definition \exists an eff proc Q_{t} such THAT $\operatorname{DOM}\left(Q_{t}\right)=T$, OR EQUIV.
\exists AN INDEx $\exists T=W_{t}$ (EnUmeration T_{t})
$x \in T$ VF $x \in \operatorname{Dom}\left(Q_{t}\right)$.

$$
\begin{aligned}
& \text { IF } x \in \varphi_{t}(x) \downarrow \\
& \text { IF }\langle t, x\rangle \in K_{0}=\operatorname{HALT} \\
& \operatorname{IFF}\langle
\end{aligned}
$$

So $T \leqslant K_{0}$
since T is arb. Re, THis SHows Ko is Re ($1-1, m-1$, TURING) COMPLETE.

$$
K=\left\{f \mid Q_{f}(f) \downarrow\right\} \text { is }
$$

re complete
Just show $K_{0} \leqslant K$
LeT <f, x > be arbs, Pair from N NoN

$$
D_{\text {FINE }} \mathrm{t}_{\mathrm{f}} x(y)=Q_{f}(x)
$$

LET INDEX OF $f_{x} B E f_{x}$ (overload)

$$
\begin{aligned}
& \langle f, x\rangle \in K_{0} \text { IF } x \in \operatorname{Dem}\left(Q_{f}\right) \mathbb{I F F} \\
& \forall y\left[Q_{f_{x}}(y) \downarrow\right] \Rightarrow f_{x} \in K \\
& \langle f, x\rangle \notin K_{0} \mid F F x \notin \operatorname{Dam}\left(Q_{f}\right) \mathbb{I F F} \\
& \forall y\left[Q_{f_{x}}(y) \uparrow\right] \Rightarrow f_{x} \notin K \\
& K_{0} S_{1} K, K_{0} \leq m K, K_{0} \leqslant \text { VeIN } K
\end{aligned}
$$

So K_{0} is $\operatorname{RE}(1-1, m-1$, Turing $)$ Complete

Rice's Theorem (Strong) in a picture part 1

$$
H_{A L T}=\left\{\langle x, y\rangle \mid \Phi_{x}(y) \downarrow\right\}
$$

LET P be A NON-TRIVIAL PROPERTY of Procedures $S_{p} \neq \varnothing, \overline{S_{p}} \neq \phi$ AS P NONTRIVIAL Moreover, if f, g are procedure indices

$$
\begin{aligned}
& \text { MOREOVER, } \\
& \text { SUCH TAT } \forall x f(x)=g(x) \\
&
\end{aligned}
$$

$$
\text { NOTE: } \uparrow=\uparrow
$$

THEN EITHER BOTH fog ARE $\mathrm{IN} \mathrm{S}_{P}$ OR BOTH ARE IN $\overline{S_{p}}$
This means f of g have same IlO BEHAVIORS, ALTHOUGH THEY may have radically different joaplementations

Rices (heorem (Strode) in a Picture part 2

Again P nontrivial so

1. $\exists r \quad \exists r \in S_{p}=\left\{f \mid Q_{f}\right.$ has Property P again P cares only about I/ o petanior
2. All indices in

$$
\text { 2. ALL INDICES IN } \quad \text { EMPTY }=\left\{f \mid \forall x Q_{f}(x) \uparrow\right\}
$$

are either in S_{p} or \vec{S}_{p}
Wlog, assume if $f \in E$ EMPTY THeN $f \notin S_{p}$ if not. So, we complement P and it is so, as P is decidable ff not P is dec. LET x, y be arbitrary Define, using $r \in S_{p}$

$$
\begin{aligned}
& \text { DEFINE, USING } \\
& F_{r, x, y}(z)=Q_{x}(y)-Q_{x}(y)+Q_{r}(z)
\end{aligned}
$$

Rice's Theorem (strong)
in a picture part 3
LET x, y be arbitrary
THEN $\langle x, y\rangle \in$ HALT $\Leftrightarrow \varphi_{x}(y) \downarrow$
LET P bE NON-TRIVIAL I/O PROPERTY
(a) $r \in S P$ is some element in $S P$

So Q_{r} has property P
(b) WLOG $\phi \in \overline{S_{P}}$. REALLY, IF
$\operatorname{Pam}\left(Q_{t}\right)=\varnothing$ THEN $t \in \bar{S}_{P}$
DEFine F_{r}, x, y BY

$$
\begin{aligned}
& F_{r, x, y}(z)=Q_{x}(y)-Q_{x}(y)+Q_{r}(y) \\
& \Leftrightarrow\langle x, y\rangle \in \text { HALT }
\end{aligned}
$$

$F_{r, x, y} \in S_{p} \Leftrightarrow\langle x, y\rangle \in$ HALT
so HALT $\leqslant S_{P}$ and PISVNDECIDAbLE

Applying Rice's Theorem

$$
\operatorname{Has}_{\text {ASERO }}=\{f \mid \exists x f(x)=0\}
$$

is undecidaple by Riceis Theorem

1. Haszero is non-trivial

$$
\begin{aligned}
& C_{0}(x)=0 \in \text { Haszero } \\
& S(x)=x+1 \notin \text { Haszero }
\end{aligned}
$$

2. Haszero is immune to implementiftion Let f, g be such that $\forall x f(x)=g(x)$

$$
\begin{aligned}
& \text { LET } 5, g \\
& f \in \text { HASZERO } \Leftrightarrow \exists x f(x)=0
\end{aligned}
$$

LeT x x_{0} be some such value, $f\left(x_{0}\right)=0$
BUT THEN $g\left(x_{0}\right)=0$ AND So

$$
\begin{aligned}
& \text { BT THT THEN } g\left(x_{0}\right)=0 \text { ANS } \\
& \Rightarrow \exists x g(x)=0 \Rightarrow g \in \text { AASZERO } \\
& \Leftrightarrow \forall x(x) \neq 0
\end{aligned}
$$

* f Haszero $\Leftrightarrow \forall x f(x) \neq 0$

$$
\begin{aligned}
\Leftrightarrow & \forall x g(x) \neq 0 \\
& A S \forall x g(x)
\end{aligned}
$$

As $\forall x g(x)=f(x)$
$\Leftrightarrow g \notin$ HASZERO

Applying Rices Theorem

$$
M I=\{f \mid \forall x f(x)<f(x+1)\}
$$

is undecidable by Rice's theorem

1. MI IS NON-TRIVIAL

$$
\begin{aligned}
& S(x)=x+1 \in M I \\
& C_{0}(x)=0 \text { MI }
\end{aligned}
$$

2. MI is immune to implementation

Let f, g be such that $\forall x f(x)=g(x)$

$$
\begin{aligned}
f \in M I & \forall x f(x)<f(x+1) \\
\Leftrightarrow & \forall \times g(x)<g(x+1) \\
& A S \forall x g(x)=f(x) \\
\Leftrightarrow & g \in M I
\end{aligned}
$$

Note 1: We really talk about $Q_{f}+\varphi_{g}$ but overloading is fine NOTE 2: MI = MONOTONICALLY INCREASING

Notes on Reduction

$$
\begin{aligned}
& \text { TOTAL }=\{f \mid \forall x f(x) \downarrow\} \\
& \text { TOTAL } \leqslant, ~ M I=\{f \mid \forall x f(x)<f(x+1)\}
\end{aligned}
$$

Let f be arbitrary and define

$$
\begin{aligned}
\forall x G_{f}(x) & =f(x)-f(x)+x \\
f \in \text { TOTAL } & \Rightarrow G_{f}(x)=x \\
& \Rightarrow G_{f} \in M I \\
f \& T O T A L & \Rightarrow \exists x f(x) \uparrow \\
& \Rightarrow G_{f}(x) \uparrow \text { FOR SOME } x \\
& \Rightarrow G_{f} \notin M I
\end{aligned}
$$

THUS, TOTALSMI
AND MI IS NOT RE
THAT IS, not SEM-DECIDABLE
This is a stronger result then Rice's can get Us.

