
Generally useful information. 

• The notation z = <x,y> denotes the pairing function with inverses x = <z>1 and y = <z>2.  

• The minimization notation µ  y [P(…,y)] means the least y (starting at 0) such that P(…,y) is 
true. The bounded minimization (acceptable in primitive recursive functions) notation  
µ  y (u≤y≤v) [P(…,y)] means the least y (starting at u and ending at v) such that P(…,y) is true. 
Unlike the text, I find it convenient to define µ  y (u≤y≤v) [P(…,y)] to be v+1, when no y 
satisfies this bounded minimization.  

• The tilde symbol, ~, means the complement. Thus, set ~S is the set complement of set S, and 
predicate ~P(x) is the logical complement of predicate P(x). 

• The minus symbol, –, when applied to sets is set difference, so S – T = {x | x∈S && x∉T}. 

• The absolute value, |z|, is the magnitude of z. Thus, |x-y| is the difference between x and y, when 
x and y are both non-negative. 

• A function P is a predicate if it is a logical function that returns either 1 (true) or 0 (false). Thus, 
P(x) means P evaluates to true on x, but we can also take advantage of the fact that true is 1 and 
false is 0 in formulas like y ×  P(x), which would evaluate to either y (if P(x)) or 0 (if ~P(x)). 

• A set S is recursive if S has a total recursive characteristic function χS, such that x ∈  S  ⇔  
χS(x). Note χS is a predicate. Thus, it evaluates to 0 (false), if x ∉  S. 

• When I say a set S is re, unless I explicitly say otherwise, you may assume any of the following 
equivalent characterizations: 
1. S is either empty or the range of a total recursive function fS. 

2. S is the domain of a partial recursive function gS. 
3. S is recognizable by a Turing Machine. 

• If I say a function g is partially computable, then there is an index g (I know that’s overloading, 
but that’s okay as long as we understand each other), such that Φg(x) = Φ(g, x) = g(x). Here Φ  is 
a universal partially recursive function.  
Moreover, there is a total recursive function STP, such that  
STP(g, x, t) is 1 (true), just in case g, started on x, halts in t or fewer steps.  
STP(g, x, t) is 0 (false), otherwise.  
Finally, there is another total recursive function VALUE, such that  
VALUE(g. x, t) is g(x), whenever STP(g, x, t).  
VALUE(g, x, t) is defined but meaningless if ~STP(g, x, t). 

• The notation f(x)↓  means that f converges when computing with input x, but we don’t care about 
the value produced. In effect, this just means that x is in the domain of f. 

• The notation f(x)↑  means f diverges when computing with input x. In effect, this just means that 
x is not in the domain of f. 

• The Halting Problem for any effective computational system is the problem to determine of an 
arbitrary effective procedure f and input x, whether or not f(x)↓ . The set of all such pairs is a 
classic re non-recursive one. The set of all such <f,x> is denoted K0. A related set K is the set of 
all f that halt on their own indices. Thus, K = { f | Φ f(f) ↓  } and K0 = {<f,x>|Φ f(x)↓  } 

• The Uniform Halting Problem is the problem to determine of an arbitrary effective procedure f, 
whether or not f is an algorithm (halts on all input). The set of all such function indices is a 
classic non re one and is often called TOTAL.
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 1. Let set A be recursive, B be re non-recursive and C be non-re. Choosing from among (REC) 
recursive, (RE) re non-recursive, (NR) non-re, categorize the set D in each of a) through d) by 
listing all possible categories. No justification is required. 
a.) D = ~C  RE, NR         

b.) D ⊆  (A∪C)  REC, RE, NR         
c.) D = ~B    NR          

d.) D = B −  A  REC, RE         

 2. Prove that the Halting Problem (the set K0 ) is not recursive (decidable) within any formal model of 
computation. (Hint: A diagonalization proof is required here.)  

Assume we can decide the halting problem.  Then there exists some total function Halt such 
that 

    1  if [x] (y) is defined 
 Halt(x,y)  = 

      0  if [x] (y) is not defined 
Here, we have numbered all programs and [x] refers to the x-th program in this ordering.  We 
can view Halt as a mapping from ℵ  into ℵ   by treating its input as a single number 
representing the pairing of two numbers via the one-one onto function 

 pair(x,y) = <x,y> = 2x  (2y + 1) – 1 
 with inverses  

  <z>1 = exp(z+1,1) 
  
 <z>2 = ((( z + 1 ) // 2 <z>1  ) – 1 ) // 2 
Now if Halt exist, then so does Disagree, where 

   0    if Halt(x,x) = 0, i.e, if Φx (x) is not defined 
 Disagree(x) = 

     µy (y == y+1)  if Halt(x,x) = 1, i.e, if Φx (x) is defined 

Since Disagree is a program from ℵ  into ℵ   , Disagree can be reasoned about by Halt.  Let d 
be such that Disagree = Φd, then 

 Disagree(d) is defined ⇔  Halt(d,d) = 0 ⇔  Φd (d) is undefined ⇔  Disagree(d) is undefined 
But this means that Disagree contradicts its own existence.  Since every step we took was 
constructive, except for the original assumption, we must presume that the original assumption 
was in error.  Thus, the Halting Problem is not solvable. 
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 3. Using reduction from the known undecidable HasZero, HZ = { f | ∃x f(x) = 0 }, show the non-
recursiveness (undecidability) of the problem to decide if an arbitrary primitive recursive function g 
has the property IsZero, Z = { f | ∀x f(x) = 0 }. 

HZ = { f | ∃x ∃t [ STP(f, x, t) & VALUE(f, x, t) == 0] } 
Let f be the index of an arbitrary effective procedure. 

Define gf(y) = 1 -  ∃x ∃t [ STP(f, x, t) & VALUE(f, x, t) == 0] 
If ∃x f(x) = 0, we will find the x and the run-time t, and so we will return 0 (1 – 1) 
If ∀x f(x) ≠  0, then we will diverge in the search process and never return a value. 

Thus, f ∈  HZ iff gf ∈  Z = { f | ∀x f(x) = 0 }. 

 4. Choosing from among (D) decidable, (U) undecidable, (?) unknown, categorize each of the 
following decision problems. No proofs are required.  

 

Problem / Language Class Regular Context Free 

L = Σ* ? D U 

L = φ  ? D D 

x  ∈  L2, for arbitrary x ? D D 

 5. Choosing from among (Y) yes, (N) No, (?) unknown, categorize each of the following closure 
properties. No proofs are required.  

 

Problem / Language Class Regular Context Free 

Closed under intersection? Y N 

Closed under quotient? Y N 

Closed under quotient with Regular languages? Y Y 

Closed under complement? Y N 
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 6. Prove that any class of languages, C, closed under union, concatenation, intersection with regular 

languages, homomorphism and substitution (e.g., the Context-Free Languages) is closed under 
MissingMiddle, where, assuming L is over the alphabet Σ , 
MissingMiddle(L) = { xz | ∃y ∈  Σ* such that xyz ∈  L } 
You must be very explicit, describing what is produced by each transformation you apply. 

Define the alphabet Σ’ = { a’ | a∈Σ  }, where, of course, a’ is a “new” symbol, i.e., one not in Σ . 

Define homomorphisms g and h, and substitution f as follows: 
g(a) = a’  ∀a∈Σ   h(a) = a  ;   h(a’) = λ  ∀a∈Σ   f(a) = {a, a’ } ∀a∈Σ  
 
Consider R = Σ* •   g(Σ*) •  Σ* = { x y’ z | x, y, z  ∈Σ*  and  y’=g(y) ∈Σ’* } 
Σ* is regular since it is the Kleene star closure of a finite set. 
g(Σ*) is regular since it is the homomorphic image of a regular language. 
R is regular as it is the concatenation of regular languages. 
 
Now, f(L) = { f(w) | w ∈  L } is in C since C is closed under substitution. This language is the set 
of strings in L with randomly selected letters primed. Any string w∈L gives rise to 2|w| strings 
in f(L). 
 
f(L) ∩  R = { x y’ z | x y z ∈  L and y’=g(y) } is in C since C is closed under intersection with 
regular languages. 
 
MissingMiddle(L) = h(  f(L) ∩  R ) = { x z | ∃y ∈  Σ* such that xyz ∈  L } which is in C, since C is 
closed under homomorphism. Q.E.D. 

 7. Use PCP to show the undecidability of the problem to determine if the intersection of two context 
free languages is non-empty. That is, show how to create two grammars GA and GB based on some 
instance P = <<x1,x2,…,xn>, <y1,y2,…,yn>> of PCP, such that L(GA) ∩  L(GB) ≠  φ  iff P has a 
solution. Assume that P is over the alphabet Σ .You should discuss what languages your grammars 
produce and why this is relevant, but no formal proof is required. 

GA = ( { A } , Σ  ∪  { [ i ]  | 1≤i≤n } , A , PA }  GB = ( { B } , Σ  ∪  { [ i ]  | 1≤i≤n } , B , PB } 

PA : A →  xi A [ i ]  |  xi [ i ]    PB : A →  yi B [ i ]  |  yi [ i ] 

L(GA) = { xi1  xi2 … xip  [ip] … [i2] [i1]   | p ≥  1, 1 ≤ it ≤ n, 1 ≤ t  ≤ p  } 

L(GB) = { yj1  yj2 … yjq  [jq] … [j2] [j1]   | q ≥  1, 1 ≤ ju ≤ n, 1 ≤ u  ≤ q  } 

L(GA)  ∩   L(GB) = { w  [kr] … [k2] [k1]   | r ≥  1, 1 ≤ kv ≤ n, 1 ≤ v  ≤ r  }, where 

w = xk1 xk2 … xkr  =  yk1 yk2 … ykr   

If L(GA)  ∩   L(GB) ≠  φ  then such a w exists and thus k1 , k2 , … , kr is a solution to this instance 
of PCP. This shows that a decision procedure for the non-emptiness of the intersection of CFLs 
implies a decision procedure for PCP, which we have already shown is undecidable. Hence, the 
non-emptiness of the intersection of CFLs is undecidable.  Q.E.D. 
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 8. Consider the set of indices CONSTANT = { f | ∃K ∀y [ ϕ f(y) = K ] }. Use Rice’s Theorem to show 

that CONSTANT is not recursive. Hint: There are two properties that must be demonstrated. 
 
First, show CONSTANT is non-trivial. 
 Z(x) = 0 is in CONSTANT 
 S(x) = x+1 is not in CONSTANT 
 Thus, CONSTANT is non-trivial 
 
Second, let f, g be two arbitrary computable functions with the same I/O behavior. 
 That is, ∀x, if f(x) is defined, then f(x) = g(x); otherwise both diverge, i.e., f(x)↑  and g(x)↑  
 Now, f ∈  CONSTANT  

⇔  ∃K ∀x  [ f(x) = K ]   by definition of CONSTANT 
⇔  ∀x [ g(x) = C ]  where C is the instance of K above, since ∀x [  f(x) = 
g(x) ] 
⇔  ∃K ∀x [ g(x) = K ]  from above 
⇔  g ∈  CONSTANT by definition of CONSTANT 

 
Since CONSTANT meets both conditions of Rice’s Theorem, it is undecidable.  Q.E.D. 

 
 9. Show that CONSTANT ≡m TOT, where TOT = { f | ∀y ϕ f(y)↓  }. 

 
CONSTANT ≤m TOT  
Let f be an arbitrary effective procedure. 
 Define gf by 

gf (0) = f(0) 
gf (y+1) = f(y+1) + µ  z  [f(y+1) = f(y) ] 

 Now, if f ∈  CONSTANT then ∀y [ f(y)↓   and  [ f(y+1) = f(y) ] ].  
Under this circumstance, µ  z [f(y+1) = f(y) ] is 0 for all y and gf (y) = f(y) for all y.  
Clearly, then gf ∈  TOT 

 If, however, f ∉  CONSTANT then ∃y [f(y+1) ≠  f(y) ] and thus, ∃y f(y)↑ .  
 Choose the least y meeting this condition.  

If f(y)↑   then gf (y)↑  since f(y) is in gf (y)’s definition (the 1st  term). 
If f(y)↓   but  [f(y+1) ≠  f(y)] then gf (y)↑  since µ  z [ f(y+1) = f(y) ]↑  (the 2nd  term). 
Clearly, then gf ∉  TOT 

Combining these, f ∈  CONSTANT ⇔   gf ∈  TOT and thus CONSTANT ≤m TOT 
 
TOT  ≤m CONSTANT  
Let f be an an arbitrary effective procedure. 
 Define gf by 

gf (y) = f(y) – f(y) 
 Now, if f ∈  TOT then ∀y [ f(y)↓  ] and thus ∀y gf (y) = 0 . Clearly, then gf ∈  CONSTANT 
 If, however, f ∉  TOT then ∃y [f(y)↑  ] and thus, ∃y [gf (y)↑]. Clearly , then gf ∉  
CONSTANT 
Combining these, f ∈  TOT ⇔   gf ∈  CONSTANT and thus TOT  ≤m CONSTANT 
 
Hence, CONSTANT ≡m TOT.  Q.E.D. 
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 10. Why does Rice’s Theorem have nothing to say about each of the following? Explain by showing 

some condition of Rice’s Theorem that is not met by the stated property.  
  a.) AT-LEAST-LINEAR = { f | ∀y ϕ f(y) converges in no fewer than y steps }. 

 
We can deny the 2nd condition of Rice’s Theorem since 

Z, where Z(x) = 0, implemented by the TM R converges in one step no matter what x is 
and hence is not in AT-LEAST-LINEAR 
Z’, defined by TM R L R, is in AT-LEAST-LINEAR since takes over 2*|input| steps. 
 
However, ∀x [ Z(x) = Z’(x) ], so they have the same I/O behavior and yet one is in and 
the other is out of AT-LEAST-LINEAR, denying the 2nd condition of Rice’s Theorem 

 
  b.) HAS-IMPOSTER = { f | ∃  g [ g≠f  and ∀y [ ϕg(y) = ϕ f(y) ] ] }. 
 

We can deny the 1st condition of Rice’s Theorem since all functions have an imposter. To 
see this, consider, for any function f, the equivalent but distinct function g(x) = f(x) + 0. 
Thus, HAS-IMPOSTER is trivial since it is equal to ℵ , the set of all indices. 

 11. We described the proof that 3SAT is polynomial reducible to Subset-Sum.  
a.) Describe Subset-Sum 
b.) Show that Subset-Sum is in NP 
c.) Assuming a 3SAT expression (a + ~b + c) (b + b + ~c), fill in the upper right part of the 
reduction from 3SAT to Subset-Sum. 
 

 a b c a + ~b + c b + b + ~c 
a 1   1  

~a 1     
b  1   1 or 2 

~b  1  1  
c   1 1  

~c   1  1 
C1    1  
C1’    1  
C2     1 
C2’     1 

 1 1 1 3 3 
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 12. Use the appropriate Pumping Lemmas to show: 
a.) { ww | w is over {a,b} } is not Regular 
 
Assume the language L = { ww | w is over {a,b} } is Regular. Let N>0 be the value associated 
with L by the Pumping Lemma for Regular languages. 
aNbaNb ∈  L. 
By Pumping Lemma, aNbaNb = xyz, for some strings x,y,z over {a,b},  
where |y| > 0, |xy| ≤ N and ∀i≥0 xyiz ∈  L. Because |xy| ≤ N, y is a string in {a}+. 
Let i=0, then xyiz = xz = aN-|y|baNb. Since |y|>0, there are fewer a’s preceding the first b in the 
string than preceding the second one, so it is not in L contradicting the Pumping Lemma. 
 
b.) { ww | w is over {a,b} } is not Context Free 
 
Assume the language L = { ww | w is over {a,b} } is Context Free. Let N>0 be the value 
associated with L by the Pumping Lemma for Context Free languages. 
aNbNaNbN ∈  L. 
By Pumping Lemma, aNbNaNbN = uvwxy, for some strings u,v,w,x,y over {a,b},  
where |vx| > 0, |vwx| ≤ N and ∀i≥0 uviwxiy ∈  L. 
All cases collapse into the following analysis. vwx must include at most one of the ‘a’ sequences 
and at most one of the ‘b’ sequences; moreover it must have at least one of these cases (first ‘a’ 
sequence but not second; first ‘b’ sequence but not second; second ‘a’ sequence but not first; 
or second ‘b’ sequence but not first). Set i=0 and we have removed letters from one of the ‘a’ 
sequences and/or one of the ‘b’ sequences, but not the other. This denies that uwy is in L, 
thereby contradicting the Pumping Lemma. 

 
13. Write a context-sensitive grammar for the complement of { ww | w is over {a,b} } 

S   →  L<Odd> | AB | BA 
<Odd> →  L<Even> | λ  
<Even> →  L<Odd>  
A   →  L A L | a 
B  →  L B L | b 
L  →  a | b 
 

14.  Write a right linear grammar for  
       { w | w is over {0,1} and is divisible by 3 when interpreted as a binary number } 

S   →  0<3> | 1<1>  
<1> →  0<2> | 1<3>  
<2> →  0<1> | 1<2>  
<3> →  0<3> | 1<1> | λ  


