1. Write a Context Free Grammar for the language  $L = \{ a^k b^m c^n | k = n + m, \text{ or } m = k + n, \text{ or } n = k + m, k > 0, m > 0, n > 0 \}.$ 

 $S \rightarrow aAc \mid aA'bbC'c$   $A \rightarrow aAc \mid aA'b \mid bC'c$   $A' \rightarrow aA'b \mid \lambda$   $C' \rightarrow bC'c \mid \lambda$ 

2. Consider the language

 $\mathbf{L} = \{ \mathbf{a}^{\mathbf{n}} \mathbf{b}^{\mathbf{n}} \mid \mathbf{n} > 0 \}.$ 

Use the Pumping Lemma for Context-Free Languages to show that L is not context-free.

PL: Provides N>0We: Choose  $a^N b^{N!} \in L$ PL: Splits  $a^N b^{N!}$  into uvwxy,  $|vwx| \le N$ , |vx| > 0, such that  $\forall i \ge 0$   $uv^i wx^i y \in L$ We: Choose i=2Case 1: vwx contains only b's, then we are increasing the number of b's while leaving the number of a's unchanged. In this case  $uv^2 wx^2 y$  is of form  $a^N b^{N!+c}$ , c>0 and this is not in L. Case 2: vwx contains some a's and maybe some b's. Under this circumstances  $uv^2 wx^2 y$  has at least N+1 a's and at most N!+N-1 b's. But  $(N+1)! = N!(N+1) = N!*N+N \ge N! + N > N!+N-1$  and so is not in L. Cases 1 and 2 cover all possible situations, so L is not a CFL.

- 3. Present the CKY recognition matrix for the string **bbabb** assuming the Chomsky Normal Form grammar, G = ({S,A,B,C,D}, {a,b}, R, S), specified by the rules R:
  - $S \rightarrow AB | BA | BD$   $A \rightarrow CS | CD | a$   $B \rightarrow DS | b$  $C \rightarrow a$
  - $D \rightarrow b$

|   | b  | b  | a  | b  | b  |
|---|----|----|----|----|----|
| 1 | BD | BD | AC | BD | BD |
| 2 | S  | S  | SA | S  |    |
| 3 | В  | SB | SA |    | 1  |
| 4 | SB | SB |    | 1  |    |
| 5 | SB |    | 1  |    |    |

| Problem / Language Class (C)                                                                               | Regular | <b>Context Free</b> |
|------------------------------------------------------------------------------------------------------------|---------|---------------------|
| Closed under union with Context Free languages?                                                            | N       | Y                   |
| Closed under quotient with languages of its own class (C), i.e., L1/L2                                     | Y       | Ν                   |
| Closed under difference with languages of its<br>own class (C), i.e., (difference (L1, L2) = L1 – L2<br>)? | Y       | N                   |
| Closed under intersection with languages of its own class?                                                 | Y       | Ν                   |

5. Prove that any class of languages, C, closed under union, concatenation, intersection with regular languages, homomorphism and substitution (e.g., the Context-Free Languages) is closed under Erase Middle with Regular Sets (em), where L ∈ C, R is Regular, L and R are over the alphabet Σ, and L em R = { xz | x,z ∈ Σ<sup>+</sup> and ∃y ∈ R, such that xyz ∈ L }. You may assume substitution f(a) = {a, a'}, and homomorphisms g(a) = a' and h(a) = a, h(a') = λ. Here a∈Σ and a' is a distinct new character associated with each a∈Σ.

You must be very explicit, describing what is produced by each transformation you apply.

L em  $R = h(f(L) \cap \Sigma^+ g(R) \Sigma^+)$ 

 $f(L) = \{ \underline{w} \mid w \in L \}$  where  $\underline{w}$  has some (or none) of its letters primed. f(L) is a CFL since CFLs are closed under substitution.

 $g(R) = \{ y' | y \in R \}$  where y' has all of its letter primed. g(R) is Regular since Regular languages are closed under homomorphism.

 $\Sigma^+ g(R) \Sigma^+ = \{xy'z \mid x, z \in \Sigma^+ \text{ and } y \in R, \text{ This is a Regular language since Regular languages are closed under concatenation.}$ 

 $f(L) \cap \Sigma^+ g(R) \ \Sigma^+ = \{xy'z \mid xyz \in L, x, z \in \Sigma^+ \text{ and } y \in R\}$ . This is a CFL since CFLs are closed under intersection with Regular.

*L* em  $R = h(f(L) \cap \Sigma^+ g(R) \Sigma^+ = \{xz \mid x, z \in \Sigma^+ and \exists y \in R where xyz \in L\}$  is a CFL since CFLs are closed under homomorphism.

- 6. Consider the CFG G = ( { S, T }, { a, b }, R, S ) where R is:  $S \rightarrow a T T | T S | a$  $T \rightarrow b S T | b$
- **a.**) Present a pushdown automaton that accepts the language generated by this grammar. You may (and are encouraged) to use a transition diagram where transitions have arcs with labels of form  $\mathbf{a}, \alpha \rightarrow \beta$  where  $\mathbf{a} \in \Sigma \cup \{\lambda\}, \alpha, \beta \in \Gamma^*$ . Note: I am encouraging you to use extended stack operations.



Above treats stack contents as being read backwards (deep to shallow). What parsing technique are you using? (Circle one) **top-down** or **bottom-up** How does your PDA accept? (Circle one) **final state** or **empty stack** or <u>final state and empty stack</u> What is the **initial state**? \_\_\_\_\_\_ q\_\_\_\_ What is the **initial stack content**? \_\_\_\_\_\_ \$

> Or can have  $\mathbf{a}, \mathbf{S} \to \mathbf{TT} \mid \lambda; \lambda, \mathbf{S} \to \mathbf{TS}$  $\mathbf{b}, \mathbf{T} \to \mathbf{ST} \mid \lambda$



What parsing technique are you using? (Circle one) top-down or bottom-upHow does your PDA accept? (Circle one) final state or empty stack or final state and empty stackWhat is the initial state?*q*What is the initial stack content?*S*What are your final states (if any)?*None* 

**b.**) Now, using the notation of **ID**s (Instantaneous Descriptions, **[q, x, z]**), describe how your PDA accepts strings generated by **G**.

 $[q, w, \$] \Rightarrow^* [f, \lambda, \lambda]$  if by final state and empty stack (my solution on (a) Bottom-Up)

 $[q, w, S] \Rightarrow^* [q, \lambda, \lambda]$  if by empty stack (my solution on (a) Top-Down)

7. Consider the context-free grammar  $G = ( \{ S, A, B \}, \{ a, b \}, R, S )$ , where R is:

 $S \rightarrow SAB \mid BA$  $A \rightarrow AB \mid a$  $B \rightarrow bS \mid b \mid \lambda$ 

- a.) Remove all λ-rules from G, creating an equivalent grammar G'. Show all rules. *Nullable* = {B}
  G':
  S → SAB | SA | BA | A
  A → AB | a Note: There is a rule A → A but it was removed
  - $A \rightarrow AB \mid a \qquad \text{Note: Inere is a rule } A$  $B \rightarrow bS \mid b$
- b.) Remove all unit rules from G', creating an equivalent grammar G''. Show all rules. Unit(S)=Chain(S)={S,A}; Unit(A)={A}; Unit(B)={B}

G'':  $S \rightarrow SAB \mid SA \mid BA \mid AB \mid a$   $A \rightarrow AB \mid a$   $B \rightarrow bS \mid b$ 

c.) Convert grammar G" to its Chomsky Normal Form equivalent, G". Show all rules.G".

 $S \rightarrow S < AB > | SA | BA | AB | a$   $A \rightarrow AB | a$   $B \rightarrow <b>S | b$   $<AB > \rightarrow AB$  $<b> \rightarrow b$ 

In exam I may have some Unproductive non-terminals and some Unreachable ones.