Midterm 2 Sample
Your Raw Score

Name:
Grade: \qquad
2 1. Let $A=(\{\mathbf{q} \mathbf{1}, \ldots \mathbf{q 1 0}\},\{\mathbf{0}, \mathbf{1}\}, \mathbf{q} \mathbf{1},\{\mathbf{q} 7\})$ be some DFA. Assume you have computed the sets, $\mathbf{R}_{\mathbf{i}, \mathbf{j}}$, for $\mathbf{0} \leq \mathbf{k} \leq \mathbf{9}, \mathbf{1} \leq \mathbf{i} \leq \mathbf{1 0}, \mathbf{1 , 1} \leq \mathbf{j} \leq \mathbf{1 0}$. How do you compute $\mathbf{L}(\mathbf{A})=\mathbf{R}^{\mathbf{1 0}} \mathbf{1 , 7}$, based on the previously computed values of the $\mathbf{R}_{\mathbf{i}, \mathbf{j}}$'s?

4 2. Write a Context Free Grammar for the language \mathbf{L}, where $L=\left\{\mathbf{a}^{\mathbf{i}} \mathbf{b}^{\mathbf{j}} \mathbf{c}^{\mathrm{k}} \mid \mathbf{i} \leq(\mathbf{j}+\mathbf{k})\right\}$

5 3. Assume \mathbf{A} and \mathbf{B} are arbitrary Context Free languages. Indicate, for each of the following operations, whether the language \mathbf{L} is guaranteed to be Context Free (Note: Regular languages are Context Free). No proofs or examples are required.

Operation	Is L guaranteed to be a CFL? (Y or N)
$\mathbf{L} \subset \mathbf{A}$ (Subset)	
$\mathbf{L}=\mathbf{A} \cap \mathbf{B}$ (Intersection)	
$\mathbf{L}=\mathbf{A} \bullet \mathbf{B}$ (Concatenation)	
$L=A \oplus B(\{x \mid x$ is in either A or B, but not both \}	
$\mathbf{L}=\operatorname{Max}(\mathrm{A})(\{\mathbf{x} \mid \mathrm{x} \in \mathbf{A}$ but no $\mathbf{x y} \in \mathrm{A},\|\mathbf{y}\|>0\}$	

8 4. Use the Pumping Lemma for CFLs to show that the following language \mathbf{L} is not Context Free. $\mathbf{L}=\left\{\mathbf{a}^{\mathbf{n}} \mathbf{b}^{\mathbf{2}^{\mathbf{n}}} \mid \mathbf{n}>\mathbf{0}\right\}$. Be explicit as to why each case you analyze fails to be an instance of \mathbf{L}. I will do the first two steps for you.

ME: Assume L is Context Free

PL: Provides a whole number $\mathbf{N}>0$ that is the value associated with L based on the Pumping Lemma

6 5. Consider some languages \mathbf{A} and \mathbf{B} that are both Context Free, and neither is Regular. Define $\mathbf{L}=\mathbf{A} \cup \mathbf{B}$. Give explicit examples of languages \mathbf{A} and \mathbf{B}, and explicitly describe \mathbf{L}, or argue that this is impossible based on some well-known result, for each of the following.
a.) \mathbf{L} is Regular
b.) \mathbf{L} is Context Free, non-Regular.
c.) \mathbf{L} is Context Sensitive, non-Context-Free.

10 6. Present the CKY recognition matrix for the string abbcce assuming the Chomsky Normal Form grammar, $\mathbf{G}=(\{\mathbf{S}, \mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{X}, \mathbf{Y}, \mathbf{Z}\},\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}, \mathbf{R}, \mathbf{S})$, specified by the rules \mathbf{R} : Note: abbccc is in $\mathbf{L}(\mathbf{G})$ so that should help you if you make an error and don't see \mathbf{S} at bottom of matrix.
$\mathrm{S} \rightarrow \mathrm{AB}$
$\mathrm{A} \rightarrow \mathrm{XA} \mid \mathbf{a}$
$\mathrm{B} \rightarrow \mathrm{CZ}|\mathrm{BZ}| \mathrm{b} \mid \mathrm{c}$
$\mathrm{C} \rightarrow \mathrm{YB}$
$\mathrm{X} \rightarrow \mathbf{a}$
$\mathrm{Y} \rightarrow \mathrm{b}$
$\mathrm{Z} \rightarrow \mathrm{c}$

	\mathbf{a}	\mathbf{b}	\mathbf{b}	\mathbf{c}	\mathbf{c}	\mathbf{c}
1						
2						
3						
4						
5						
6						

A little help from your friends

Non-Terminal	First Symbol in Rules	Second Symbol in Rules
\mathbf{S}	None	None
\mathbf{A}	$\mathbf{S} \rightarrow \mathbf{A B}$	$\mathbf{A} \rightarrow \mathbf{X A}$
\mathbf{B}	$\mathbf{B} \rightarrow \mathbf{B Z}$	$\mathbf{S} \rightarrow \mathbf{A B} ; \mathbf{C} \rightarrow \mathbf{Y B}$
\mathbf{C}	$\mathbf{B} \rightarrow \mathbf{C Z}$	None
\mathbf{X}	$\mathbf{A} \rightarrow \mathbf{X A}$	None
\mathbf{Y}	$\mathbf{C} \rightarrow \mathbf{Y B}$	None
\mathbf{Z}	None	$\mathbf{B} \rightarrow \mathbf{B Z} ; \mathbf{B} \rightarrow \mathbf{C Z}$

8 7. Prove that Context-Free Languages are closed under $\operatorname{div} \mathbf{3}$ where \mathbf{L} is a CFL over the alphabet $\boldsymbol{\Sigma}$, and $\operatorname{div} 3(L)=\{x \mid x y \in L$ and $|x|$ modulo $3=0$ and $|y| \in\{0,1,2\}\}$.
In words, we remove as few characters as needed from the end of a string in \mathbf{L}, so the resulting string's length is a multiple of $\mathbf{3}$.
You may assume substitution $\mathbf{f}(\mathbf{a})=\left\{\mathbf{a}, \mathbf{a}^{\prime}\right\}$, and homomorphisms $\mathbf{g}(\mathbf{a})=\mathbf{a}^{\prime}$ and $\mathbf{h}(\mathbf{a})=\mathbf{a}, \mathbf{h}\left(\mathbf{a}^{\prime}\right)=\lambda$.
Here $\mathbf{a} \in \boldsymbol{\Sigma}$ and \mathbf{a}^{\prime} is a distinct new character associated with each $\mathbf{a} \in \boldsymbol{\Sigma}$.
You must be very explicit, describing what is produced by each transformation you apply and what kind of language results.

12 8. Consider the $\mathrm{CFG} \mathbf{G}=(\{\mathbf{S}, \mathbf{A}, \mathbf{B}\},\{\mathbf{a}, \mathbf{b}\}, \mathbf{R}, \mathbf{S})$ where \mathbf{R} is:

$$
\begin{aligned}
& \mathbf{S} \rightarrow \mathbf{A B} \\
& \mathbf{A} \rightarrow \mathbf{a A} \mid \mathbf{a} \\
& \mathbf{B} \rightarrow \mathbf{a B b} \mid \mathbf{a b}
\end{aligned}
$$

In the PDAs below, you may (and are encouraged) to use a transition diagram where transitions have arcs with labels of form $\mathbf{a}, \boldsymbol{\alpha} \rightarrow \boldsymbol{\beta}$ where $\mathbf{a} \in \Sigma \cup\{\lambda\}, \alpha, \beta \in \Gamma^{*}$. Note: This just means that you can use extended stack operations that push more than one symbol onto stack.
a.) Present a pushdown automaton that parses the language $\mathrm{L}(\mathrm{G})$ using a top down strategy.

INITIAL CONTENTS OF STACK = \qquad
b.) Now, using the notation of IDs (Instantaneous Descriptions, [$\mathbf{q}, \mathbf{x}, \mathbf{z}]$), describe how your PDA in (a) accepts strings generated by \mathbf{G}.
c.) Present a pushdown automaton that parses the language $\mathbf{L}(\mathbf{G})$ using a bottom up strategy. Note: I am fine with your showing strings that are on top of the stack in either reversed or non-reversed form. INITIAL CONTENTS OF STACK = \qquad
d) Now, using the notation of IDs (Instantaneous Descriptions, [$\mathbf{q}, \mathbf{x}, \mathbf{z}]$), describe how your PDA in (c) accepts strings generated by \mathbf{G}.
9. Consider the context-free grammar $\mathbf{G}=(\{\mathbf{S}, \mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}\},\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}, \mathbf{R}, \mathbf{S})$, where \mathbf{R} is:
$\mathbf{S} \rightarrow \mathbf{B C}|\mathbf{A C}| \mathbf{A B C}$
$\mathbf{A} \rightarrow \mathbf{a A} \mid \lambda$
$\mathbf{B} \rightarrow \mathbf{A B b} \mid \mathbf{B b}$
$\mathrm{C} \rightarrow \mathrm{bCc} \mid \mathrm{bc}$
$\mathbf{D} \rightarrow \mathbf{b B c}|\mathbf{D c}| \lambda$
3 a.) Remove $\boldsymbol{\lambda}$-rules, creating an equivalent grammar G'. Show all rules. Nullable $=\{$

2 b.) Remove all unit rules', creating an equivalent grammar G''. Show all rules.
$\operatorname{Unit}(S)=\{\quad\} ; \operatorname{Unit}(A)=\{\quad\} ; \operatorname{Unit}(B)=\{\quad\} ; \operatorname{Unit}(C)=\{\quad\} ; \operatorname{Unit}(\mathrm{D})=\{\quad\}$

2 c.) Remove all unproductive symbols, creating an equivalent grammar G'". Show all rules. Productive $=\{\quad\} ;$ Unproductive $=\{\quad\}$

2 d.) Remove all unreachable symbols, creating an equivalent grammar $\mathbf{G}^{\mathbf{i v}}$. Show all rules. Unreachable $=\{\quad\}$

3 e.) Convert grammar $\mathbf{G}^{\text {iv }}$ to its Chomsky Normal Form equivalent, $\mathbf{G}^{\mathbf{v}}$. Show all rules.

