COT 4210	Fall 2018	}
Total Points	Available	67

Midterm 2 Sample	Name: <u>KEY</u>
Your Raw Score	Grade:

2 1. Let $A = (\{q1, \dots q10\}, \{0,1\}, q1, \{q7\})$ be some DFA. Assume you have computed the sets, $R^k_{i,j}$, for $0 \le k \le 9, 1 \le i \le 10, 1, 1 \le j \le 10$. How do you compute $L(A) = R^{10}_{1,7}$, based on the previously computed values of the $R^k_{i,j}$'s?

$$R^{10}_{1,7} = R^9_{1,7} + R^{90}_{1,10} (R^9_{10,10}) * R^9_{10,7}$$

4 2. Write a Context Free Grammar for the language L, where $L = \{ a^i b^j c^k \mid i \le (j + k) \}$

$$S \rightarrow a S c | S c | A$$

 $A \rightarrow a A b | A b | \lambda$

5 3. Assume A and B are arbitrary Context Free languages. Indicate, for each of the following operations, whether the language L is guaranteed to be Context Free (Note: Regular languages are Context Free). No proofs or examples are required.

Operation	Is L guaranteed to be a CFL? (Y or N)
$L \subset A$ (Subset)	N
$L = A \cap B$ (Intersection)	N
L = A • B (Concatenation)	Y
$L = A \oplus B (\{ x \mid x \text{ is in either A or B, but not both } \}$	N
$L = Max(A) (\{ x \mid x \in A \text{ but no } xy \in A, y > 0 \}$	N

Use the Pumping Lemma for CFLs to show that the following language L is not Context Free.
 L = { aⁿ b^{2ⁿ} | n>0 }. Be explicit as to why each case you analyze fails to be an instance of L. I will do the first two steps for you.

ME: Assume L is Context Free

PL: Provides a whole number N>0 that is the value associated with L based on the Pumping Lemma

ME: Choose $w = a^N b^{2^N} = uvwxy$, $|vwx| \le N$, |v| + |x| > 0, and $\forall i \ uv^i wx^i y \in L$ PL:

Case1: Assume vwx is over a's and perhaps b's. This means that vwx must contain at least one a and at most N-1 b's. Let i=2. Assuming the case where it has just one a, the string uv^2wx^2y would start with N+1 a's and so must have 2^{N+1} b's.

Now, 2^N is always greater than N, for N>0, so $2^{N+1}=2^N+2^N$ is greater than 2^N+N which is greater than 2^N+N-1 . Thus, there are not sufficient number of b's to accommodate number of a's and so $uv^2wx^2y \not\in L$.

Case2: Assume vwx is over only b's. Let i=2. Then $uv^2wx^2y = a^N b^{2^N+|vx|}$, where |vx|>0 and so there are too many b's relative to the number of a's and so $uv^2wx^2y \not\in L$.

Cases 1 and 2 cover all possibilities, so L is not a CFL.

- 5. Consider some languages **A** and **B** that are both Context Free, and neither is Regular. Define $L = A \cup B$. Give explicit examples of languages **A** and **B**, and explicitly describe **L**, or argue that this is impossible based on some well-known result, for each of the following.
 - a.) L is Regular

$$A = \{ a^n b^m \mid m \ge n, m, n \ge 0 \}; B = \{ a^n b^m \mid m \le n, m, n \ge 0 \}; L = A \cup B = a * b *$$

b.) L is Context Free, non-Regular.

$$A = \{ a^n b^n | , n \ge 0 \}; B = A; L = A \cup B = A = \{ a^n b^n | , n \ge 0 \}$$

c.) L is Context Sensitive, non-Context-Free.

That is impossible as CFLs are known to be closed under union. The proof is trivial when employing CFGs.

10 6. Present the CKY recognition matrix for the string **abbccc** assuming the Chomsky Normal Form grammar, $G = (\{S, A, B, C, X, Y, Z\}, \{a,b,c\}, R, S)$, specified by the rules R: Note: **abbccc** is in L(G) so that should help you if you make an error and don't see S at bottom of matrix.

$$S \rightarrow AB$$

 $A \rightarrow XA \mid a$
 $B \rightarrow CZ \mid BZ \mid b \mid c$
 $C \rightarrow YB$
 $X \rightarrow a$
 $Y \rightarrow b$
 $Z \rightarrow c$

	a	b	b	c	c	c
1	AX	BY	BY	BZ	BZ	BZ
2	S	C	ВС	В	В	
3		ВС	ВС	В		•
4	S	ВС	ВС		•	
5	S	ВС		•		
6	S		.			

A little help from your friends

Non-Terminal	First Symbol in Rules	Second Symbol in Rules
S	None	None
A	$S \rightarrow AB$	$A \rightarrow XA$
В	$B \rightarrow BZ$	$S \rightarrow AB; C \rightarrow YB$
С	$B \to CZ$	None
X	$A \rightarrow XA$	None
Y	$C \rightarrow YB$	None
Z	None	$B \rightarrow BZ; B \rightarrow CZ$

8 7. Prove that Context-Free Languages are closed under div3 where L is a CFL over the alphabet Σ, and div3(L) = { $x \mid xy \in L$ and |x| modulo 3 = 0 and $|y| \in \{0,1,2\}$ }.

In words, we remove as few characters as needed from the end of a string in L, so the resulting string's length is a multiple of 3.

You may assume substitution $f(a) = \{a, a'\}$, and homomorphisms g(a) = a' and h(a) = a, $h(a') = \lambda$. Here $a \in \Sigma$ and a' is a distinct new character associated with each $a \in \Sigma$.

You must be very explicit, describing what is produced by each transformation you apply and what kind of language results.

```
div3(L) = h(f(L) \cap ((\Sigma\Sigma\Sigma) * g(\{\lambda\} \cup \Sigma \cup \Sigma\Sigma)))
```

First, all finite sets are Regular and Regular are closed under concatenation and union, so $\Sigma\Sigma\Sigma$ is Regular as is $(\{\lambda\}\cup\Sigma\cup\Sigma\Sigma)$). Next Regular are closed under Kleene star, homomorphism and, again concatenation, so $((\Sigma\Sigma\Sigma)^*g(\{\lambda\}\cup\Sigma\cup\Sigma\Sigma))$ is Regular. Second, Context Free are closed under homomorphism, substitution and intersection with regular sets, so $f(L)\cap((\Sigma\Sigma\Sigma)^*g(\{\lambda\}\cup\Sigma\cup\Sigma\Sigma))$ and $h(f(L)\cap((\Sigma\Sigma\Sigma)^*g(\{\lambda\}\cup\Sigma\cup\Sigma\Sigma)))$ are both Context Free.

Now, $((\Sigma\Sigma\Sigma)^* g(\{\lambda\} \cup \Sigma \cup \Sigma\Sigma)) = \{xy' \mid xy \in \Sigma^* \text{ and } |x| \text{ modulo } 3 = 0 \text{ and } |y| \in \{0,1,2\}\}$ $f(L) = \{f(\underline{w}) \mid w \in L\}.$

So $f(L) \cap ((\Sigma\Sigma\Sigma)^* g(\{\lambda\} \cup \Sigma \cup \Sigma\Sigma)) = \{xy' \mid xy \in L \text{ and } |x| \text{ modulo } 3 = 0 \text{ and } |y| \in \{0,1,2\}\}$ Thus, $h(f(L) \cap ((\Sigma\Sigma\Sigma)^* g(\{\lambda\} \cup \Sigma \cup \Sigma\Sigma))) = \{x \mid xy \in L \text{ and } |x| \text{ modulo } 3 = 0 \text{ and } |y| \in \{0,1,2\}\}$. This is precisely div3(L) so CFLs are closed under div3. 12 8. Consider the CFG $G = (\{S, A, B\}, \{a, b\}, R, S)$ where R is:

$$S \rightarrow AB$$

$$A \rightarrow aA \mid a$$

$$B \rightarrow aBb \mid ab$$

In the PDAs below, you may (and are encouraged) to use a transition diagram where transitions have arcs with labels of form $a, \alpha \to \beta$ where $a \in \Sigma \cup \{\lambda\}$, $\alpha, \beta \in \Gamma^*$. Note: This just means that you can use extended stack operations that push more than one symbol onto stack.

a.) Present a pushdown automaton that parses the language L(G) using a top down strategy.

INITIAL CONTENTS OF STACK =
$$\underline{S}$$

b.) Now, using the notation of **ID**s (Instantaneous Descriptions, [q, x, z]), describe how your PDA accepts strings generated by **G**.

$$[q, w, S] \mid --* [q, \lambda, \lambda]$$

c.) Present a pushdown automaton that parses the language L(G) using a bottom up strategy. Note: I am fine with your showing strings that are on top of the stack in either reversed or non-reversed form. INITIAL CONTENTS OF STACK = ___\$___

d) Now, using the notation of \mathbf{ID} s (Instantaneous Descriptions, $[\mathbf{q}, \mathbf{x}, \mathbf{z}]$), describe how your PDA accepts strings generated by \mathbf{G} .

[q, w,
$$\$$$
] |--* [f, λ , λ]

9. Consider the context-free grammar $G = (\{S, A, B, C, D\}, \{a,b,c\}, R, S)$, where R is:

$$S \rightarrow BC \mid AC \mid ABC$$

 $A \rightarrow aA \mid \lambda$
 $B \rightarrow ABb \mid Bb$
 $C \rightarrow bCc \mid bc$
 $D \rightarrow bBc \mid Dc \mid \lambda$

3 a.) Remove λ -rules from G, creating an equivalent grammar G'. Show all rules Nullable = { A, D

$$S \rightarrow BC \mid AC \mid ABC \mid C$$

$$A \rightarrow aA \mid a$$

$$B \rightarrow ABb \mid Bb$$

$$C \rightarrow bCc \mid bc$$

$$D \rightarrow bBc \mid Dc \mid c$$

2 b.) Remove all unit rules from G', creating an equivalent grammar G''. Show all rules.

Chain(S) = { S, C }; Chain(A) = { A }; Chain(B) = { B }; Chain (C) = { C }; Chain(D) = { D } S \rightarrow BC \mid AC \mid ABC \mid bCc \mid bc
$$A \rightarrow aA \mid a$$

$$B \rightarrow ABb \mid Bb$$

$$C \rightarrow bCc \mid bc$$

$$D \rightarrow bBc \mid Dc \mid c$$

2 c.) Remove all unproductive symbols, creating an equivalent grammar G'". Show all rules.

Productive = { S, A, C, D }; Unproductive = { B }
$$S \rightarrow AC \mid bCc \mid bc$$

$$A \rightarrow aA \mid a$$

$$C \rightarrow bCc \mid bc$$

$$D \rightarrow Dc \mid c$$

2 d.) Remove all unreachable symbols, creating an equivalent grammar Giv. Show all rules.

Unreachable =
$$\{ D \}$$

 $S \rightarrow AC \mid bCc \mid bc$
 $A \rightarrow aA \mid a$
 $C \rightarrow bCc \mid bc$

3 e.) Convert grammar G^{iv} to its Chomsky Normal Form equivalent, G^V. Show all rules.

$$S \rightarrow AC \mid \langle bC \rangle \langle c \rangle \mid \langle b \rangle \langle c \rangle$$

$$A \rightarrow \langle a \rangle A \mid a$$

$$C \rightarrow \langle bC \rangle \langle c \rangle \mid \langle b \rangle \langle c \rangle$$

$$\langle bC \rangle \rightarrow \langle b \rangle C$$

$$\langle a \rangle \rightarrow a$$

$$\langle b \rangle \rightarrow b$$

$$\langle c \rangle \rightarrow c$$