Assignment \# 10.1 Key
 1. Recast the decision problem for the Boolean expression

 $(a+d)(a+\sim b+c)(b+\sim d)$ as a SubsetSum problem using the construction discussed in class. Indicate what rows would need to be chosen for a solution.| | a | b | c | d | $a+d+d$ | $a+\sim b+c$ | $b+b+\sim d$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| a | 1 | 0 | 0 | 0 | 1 | 1 | 0 |
| $\sim a$ | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| b | 0 | 1 | 0 | 0 | 0 | 0 | 2 |
| \sim | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
| c | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| \sim_{c} | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| d | 0 | 0 | 1 | 1 | 2 | 0 | 0 |
| $\sim d$ | 0 | 0 | 1 | 1 | 0 | 0 | 0 |
| C1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 |
| C1' | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| C2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| C2' | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| C3 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| c3' | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| | 1 | 1 | 1 | 1 | 3 | 3 | 3 |

Assignment \# 10.2 Key

2. Recast the SubsetSum problem \{14, 7, 20, 11, 4, 13, 15, 18\}, $\mathrm{G}=43$ as a Partition Problem using the construction discussed in class. Indicate what values would need to be chosen to equal 43. Indicate the partitions that evenly divide the Partition Problem you posed
$\{14,7,20,11,4,13,15,18\} 14+7+4+18=43$
$\{14,7,20,11,4,13,15,18,161,145\}$
Can partition as $\{14,7,4,18,161\}=204 ;$
$\{20,11,13,15,145\}=204$

Assignment \# 10.3 Key

3. Recast the decision problem for the Boolean expression $(a+d)(a+\sim b+c+\sim d)\left(\sim^{\sim} b+\sim c+d\right)$ as a 0,1 -Integer Linear Programming problem using the construction discussed in class. Indicate what binary $(0,1)$ values of a, b, c and d give rise to a solution to the Integer Linear Programming problem you posed.

$0 \leq a \leq 1 ; 0 \leq b \leq 1 ; 0 \leq c \leq 1 ; 0 \leq d \leq 1$

$a+d \geq 1$
$a+(1-b)+c+(1-d) \geq 1$
(1-b) $+(1-c)+d \geq 1$
Solution: $a=1 ; b=1 ; c=1 ; d=1$ - Lots of other solutions

