Assignment \# 9.1a Key

1. Use quantification of an algorithmic predicate to estimate the complexity (decidable, re, co-re, non-re) of each of the following, (a)-(d):
a)NonTrivial $=\left\{f \mid\right.$ for some x and $y, x \neq y, \varphi_{f}(x) \downarrow, \varphi_{f}(y) \downarrow$ and $\left.\varphi_{f}(x) \neq \varphi_{f}(y)\right\}$
$\exists\langle x, y, t>[\operatorname{STP}(f, x, t) \& \operatorname{STP}(f, y, t) \&(x \neq y) \&(\operatorname{VALUE}(f, x, t) \neq(\operatorname{VALUE}(f, y, t))]$ RE

Assignment \# 9.1b Key

b) NoRepeats $=\left\{f \mid\right.$ for all x and $y, \varphi_{f}(x) \downarrow, \varphi_{f}(y) \downarrow$, and $\left.x \neq y \Rightarrow \varphi_{f}(x) \neq \varphi_{f}(y)\right\}$
$\forall<x, y>\exists \mathrm{t}[\operatorname{STP}(\mathrm{f}, \mathrm{x}, \mathrm{t}) \& \operatorname{STP}(\mathrm{f}, \mathrm{y}, \mathrm{t}) \&(\mathrm{x} \neq \mathrm{y} \Rightarrow \operatorname{VALUE}(\mathrm{f}, \mathrm{x}, \mathrm{t}) \neq(\operatorname{VALUE}(\mathrm{f}, \mathrm{y}, \mathrm{t}))]$
Non-RE, Non-Co-RE

Assignment \# 9.1c Key

c) $\mathrm{FIN}=\{\mathrm{f} \mid \operatorname{dom}(\mathrm{f})$ is finite $\}$
$\exists K \forall<x, t>[x>K \Rightarrow \sim S T P(f, x, t)]$
Non-RE, Non-Co-RE

Assignment \# 9.2a Key

2. Let sets A be recursive (decidable) and B be re non-recursive (undecidable).
Consider $C=\left\{z \mid z=x^{*} y\right.$, where $x \in A$ and $\left.y \in B\right\}$. For (a)-(c), either show sets A and B with the specified property or demonstrate that this property cannot hold.
a) Can C be recursive?

YES. Consider $\mathrm{A}=\{0\}$. $\mathrm{B}=$ Halt. $\mathrm{C}=\{0\}$

Assignment \# 9.2b Key

b) Can C be re, non-recursive?

YES. Consider $A=\{1\}$. $B=$ Halt. $C=B=$ Halt. This is Halt which is the classic re, non-recursive set.

Assignment \# 9.2c Key

c) Can C be non-re?

No. Can enumerate C as follows.
First if A is empty then C is empty and so RE by definition.
If A is non-empty then A is enumerated by some algorithm f_{A} as recursive sets are RE.
As B is non-recursive RE, then it is non-empty and enumerated by some algorithm f_{B}.
Define f_{c} by $f_{c}(<x, y>)=f_{A}(x) * f_{B}(y) . f_{C}$ is clearly an algorithm as it is the composition of algorithms. The range of f_{c} is then $\{z \mid z=x * y$, where $x \in A$ and $y \in B\}=C$ and so C must be RE.

