
11/21/18

Assignment # 9.1a Key
1. Use quantification of an algorithmic predicate to estimate the

complexity (decidable, re, co-re, non-re) of each of the following,
(a)-(d):

a)NonTrivial = { f | for some x and y, x ≠ y, jf(x)↓, jf(y)↓
and jf (x) ≠ jf(y) }

∃ <x,y,t>[STP(f,x,t) & STP(f,y,t) & (x≠y) & (VALUE(f,x,t) ≠ (VALUE(f,y,t))]
RE

1COT 4210 © UCF

11/21/18

Assignment # 9.1b Key
b) NoRepeats = { f | for all x and y, jf(x)↓, jf(y)↓,

and x ≠ y ⇒ jf(x) ≠ jf(y) }

∀<x,y> ∃t [STP(f,x,t) & STP(f,y,t) & (x≠y ⇒VALUE(f,x,t) ≠ (VALUE(f,y,t))]

Non-RE, Non-Co-RE

2COT 4210 © UCF

11/21/18

Assignment # 9.1c Key
c) FIN = { f | dom(f) is finite }

∃K∀<x,t> [x>K ⇒ ~STP(f, x,t)]
Non-RE, Non-Co-RE

3COT 4210 © UCF

11/21/18

Assignment # 9.2a Key
2. Let sets A be recursive (decidable) and B be re non-recursive

(undecidable).
Consider C = { z | z = x*y, where x Î A and y Î B }. For (a)-(c),
either show sets A and B with the specified property or
demonstrate that this property cannot hold.

a) Can C be recursive?
YES. Consider A = {0}. B = Halt. C = {0}

4COT 4210 © UCF

11/21/18

Assignment # 9.2b Key
b) Can C be re, non-recursive?
YES. Consider A = { 1 }. B = Halt. C = B = Halt. This is Halt which is the
classic re, non-recursive set.

5COT 4210 © UCF

11/21/18

Assignment # 9.2c Key
c) Can C be non-re?
No. Can enumerate C as follows.
First if A is empty then C is empty and so RE by definition.
If A is non-empty then A is enumerated by some algorithm fA as
recursive sets are RE.
As B is non-recursive RE, then it is non-empty and enumerated by
some algorithm fB.
Define fC by fC(<x,y>) = fA(x) * fB(y). fC is clearly an algorithm as it is the
composition of algorithms. The range of fC is then { z | z = x * y, where
x Î A and y Î B } = C and so C must be RE.

6COT 4210 © UCF

