
11/21/18

Assignment # 9.1a Key
1. Use quantification of an algorithmic predicate to estimate the 

complexity (decidable, re, co-re, non-re) of each of the following, 
(a)-(d):

a)NonTrivial = { f | for some x and y, x ≠ y, jf(x)↓, jf(y)↓ 
and jf (x) ≠ jf(y) }

∃ <x,y,t>[STP(f,x,t) & STP(f,y,t) & (x≠y) & (VALUE(f,x,t) ≠ (VALUE(f,y,t) )]
RE
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Assignment # 9.1b Key
b) NoRepeats = { f | for all x and y, jf(x)↓, jf(y)↓, 

and x ≠ y ⇒ jf(x) ≠ jf(y) }

∀<x,y> ∃t [STP(f,x,t) & STP(f,y,t) & (x≠y ⇒VALUE(f,x,t) ≠ (VALUE(f,y,t))] 

Non-RE, Non-Co-RE 
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Assignment # 9.1c Key
c) FIN = { f | dom(f) is finite } 

∃K∀<x,t> [x>K ⇒ ~STP(f, x,t)] 
Non-RE, Non-Co-RE 
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Assignment # 9.2a Key
2. Let sets A be recursive (decidable) and B be re non-recursive 

(undecidable). 
Consider C = { z | z = x*y, where x Î A and y Î B }. For (a)-(c), 
either show sets A and B with the specified property or 
demonstrate that this property cannot hold. 

a) Can C be recursive? 
YES. Consider A = {0}. B = Halt. C = {0}
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Assignment # 9.2b Key
b) Can C be re, non-recursive? 
YES. Consider A = { 1 }. B = Halt. C = B = Halt. This is Halt which is the 
classic re, non-recursive set.
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Assignment # 9.2c Key
c) Can C be non-re? 
No. Can enumerate C  as follows.
First if A is empty then C is empty and so RE by definition.
If A is non-empty then A is enumerated by some algorithm fA as 
recursive sets are RE.
As B is non-recursive RE, then it is non-empty and enumerated by 
some algorithm fB.
Define fC by fC(<x,y>) = fA(x) * fB(y). fC is clearly an algorithm as it is the 
composition of algorithms. The range of fC is then { z | z = x * y, where 
x Î A and y Î B } = C and so C must be RE.
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