Assignment # 8.1 Key

1. Show that Halt reduces to Non-Trivial, where Non-Trivial = { f | for some x and y, $x \neq y$, $\varphi_f(x) \downarrow$, $\varphi_f(y) \downarrow$ and $\varphi_f(x) \neq \varphi_f(y)$ }

Let f be an arbitrary natural number. f is in Non-Trivial iff for some x and y, $x \neq y$, $\varphi_f(x) \downarrow$, $\varphi_f(y) \downarrow$ and $\varphi_f(x) \neq \varphi_f(y)$

Define g by $\varphi_{g}(z) = \exists \langle x, y, t \rangle$ [STP(f,x,t) & STP(f,y,t) & (x \neq y) & (VALUE(f,x,t) \neq (VALUE(f,y,t))], for all z.

Clearly, $\varphi_g(z) = 1$, for all z and so <g,0> is in Halt, iff there is some pair, x,y, $x \neq y$, such that $\varphi_f(x) \downarrow$ and $\varphi_f(y) \downarrow$ and $\varphi_f(x) \neq \varphi_f(y)$, and $\varphi_g(z) \uparrow$, for all z, otherwise, and so <g,0> is not in Halt.

Summarizing, f is in Non-Trivial iff g is in Halt and so

Non-Trivial \leq_m Halt as we were to show.

Assignment # 8.2 Key

2. Show that Non-Trivial reduces to Halt. (1 plus 2 show they are equally hard)

Let f be an arbitrary natural number. f is in Non-Trivial iff for some x and y, $x \neq y$, $\varphi_f(x) \downarrow$, $\varphi_f(y) \downarrow$ and $\varphi_f(x) \neq \varphi_f(y)$

Define g by $\varphi_g(z) = \exists \langle x, y, t \rangle$ [STP(f,x,t) & STP(f,y,t) & (x \neq y) & (VALUE(f,x,t) \neq (VALUE(f,y,t))], for all z.

Clearly, $\varphi_g(z) = 1$, for all z and so $\langle g, 0 \rangle$ is in Halt, iff there is some pair, x,y, $x \neq y$, such that $\varphi_f(x) \downarrow$ and $\varphi_f(y) \downarrow$ and $\varphi_f(x) \neq \varphi_f(y)$, and $\varphi_g(z) \uparrow$, for all z, otherwise, and so $\langle g, 0 \rangle$ is not in Halt.

Summarizing, f is in Non-Trivial iff g is in Halt and so

Non-Trivial \leq_m Halt as we were to show.

Assignment # 8.3 Alternate Key

3. Use Reduction from Total to show that NoRepeats is not even re, where NoRepeats = { f | for all x and y, $\varphi_f(x) \downarrow$, $\varphi_f(y) \downarrow$, and x \neq y $\Rightarrow \varphi_f(x) \neq \varphi_f(y)$ }

Let f be an arbitrary natural number. f is in Total iff $\forall x \phi_f(x) \downarrow$

Define g by
$$\varphi_g(x) = \varphi_f(x) - \varphi_f(x) + x$$
 for all x.

Clearly, $\varphi_g(x) = x$, for all x, (converges everywhere with no repetitions) iff $\forall x \varphi_f(x) \downarrow$; otherwise $\varphi_g(x) \uparrow$ for some x and so is not in NoRepeats.

But then f is in Total iff g is in NoRepeat.

TOTAL \leq_{m} **NoRepeats** as we were to show.

Assignment # 8.4 Key

4. Use reduction from NoRepeats to Total This, together with #3, shows NoRepeats and is Total are equally hard. Let f be an arbitrary natural numbers.

Let f be an arbitrary index.

Define g by $\phi_g(\langle x, y \rangle) = \mu z [(x = y) | | (\phi_f(x) != \phi_f(y)].$

Clearly, $\varphi_g(\langle x,y \rangle) = 0$, for x,y, if $\varphi_f(x) \downarrow$ and $\varphi_f(y) \downarrow$, and either x=y or $\varphi_f(x) != \varphi_f(y)$ else for some x,y, $\varphi_g(\langle x,y \rangle) \uparrow$

Summarizing, f is in NoRepeats implies g is in Total and f is not in NoRepeats implies g diverges somewhere and so is not in Total.

NoRepeats \leq_{m} **Total** as we were to show.

Assignment # 8.5 Key

5. Use Rice's Theorem to show that Non-Trivial is undecidable

First, Non-Trivial is non-trivial as S(x) = x+1 is in Non-Trivial and CO(x) = 0 is not.

Second, Non-Trivial is an I/O property.

To see this, let f and g are two arbitrary indices such that $\forall x [\phi_f(x) = \phi_g(x)]$

f \in Non-Trivial iff \exists y,z, y \neq z, such that $\varphi_f(y) \downarrow$, $\varphi_f(z) \downarrow$ and $\varphi_f(y) \neq \varphi_f(z)$ iff, since $\forall x [\varphi_f(x) = \forall x \varphi_g(x)]$, \exists y,z, y \neq z, (same y,z as above) such that $\varphi_g(y) \downarrow$, $\varphi_g(z) \downarrow$ and $\varphi_g(y) \neq \varphi_g(z)$ iff $g \in$ Non-Trivial.

Thus, $f \in Non$ -Trivial iff $g \in Non$ -Trivial.

Assignment # 8.6 Key

6. Use Rice's Theorem to show that NoRepeats is undecidable

First, NoRepeats is non-trivial as S(x) = x+1 is in NoRepeats and CO(x) = 0 is not.

Second, NoRepeats is an I/O property.

To see this, let f and g are two arbitrary indices such that $\forall x [\phi_f(x) = \phi_g(x)].$

 $f \in NoRepeats \text{ iff, for all } x, y \phi_f(x) \downarrow, \phi_f(y) \downarrow \text{ and } x \neq y \Rightarrow \phi_f(x) \neq \phi_f(y) \text{ iff, since}$ $\forall x [\phi_f(x) = \phi_g(x)], \text{ for all } x, y, \phi_g(x) \downarrow, \phi_g(y) \downarrow \text{ and } x \neq y \Rightarrow \phi_g(x) \neq \phi_g(y) \text{ iff } g \in NoRepeats.}$

Thus, f ∈ NoRepeats iff g ∈ NoRepeats.