Assignment # 5.1 (M-N)

a. L = { $x#y | x, y \in \{0,1\}^+$ and y is the ones complement of x }

Let R_L be the right invariant equivalence class defined by M-N for L. Consider the pair of equivalent classes [010ⁱ#] and [010^j#], i≠j, i,j>0. 010ⁱ#101ⁱ \in L but 010^j#101ⁱ \notin L. Thus, for each distinct pair, i,j, i≠j, [010ⁱ] ≠ [010^j] and hence R_L has infinite index.

L is not Regular by Myhill-Nerode Theorem.

1

Assignment # 5.1 (PL)

a. L = { $x#y | x, y \in \{0,1\}^+$ and y is the ones complement of x }

PL: Gives me N>0 associated with L Me: Choose w=10^N#01^N which is in L PL: States w=xyz, $|xy| \le N$, |y| > 0, $xy^iz \in L$ for all $i \ge 0$ Me: Choose i = 0. Case 1: If the initial 1 is erased, we have $0^{N-|y|-1}#01^N$ which is not in L. Case 2: If only 0's are affected, we have $10^{N-|y|}#01^N$, which is not in L when |y| > 0 (would need to end with $#01^{N-|y|}$).

Thus, L is not Regular by Pumping Lemma for Regular Languages.

Assignment # 5.1b (M-N)

b. $L = \{ a^i b^j c^k | i > j^* k \}$

Let R_L be the right invariant equivalence relation defined for L by M-H. Consider $[a^{i+1}b^i]$ and $[a^{i+1}b^j]$, j > i. $a^{i+1}b^i c \in L$ (i+1 > i*1) but $a^{i+1}b^j c \notin L$ (i+1 $\leq j$ *1 as j > i and so j*1 is at least i+1)

Thus, for any two distinct i,j, i≠j, [aⁱ⁺¹bⁱ] ≠ [aⁱ⁺¹b^j]

Assignment # 5.1b (PL)

b. $L = \{ a^i b^j c^k | i > j^* k \}.$

Me: L is regular PL: Gives me N>0 associated with L Me: Choose w= $a^{N+1}b^{N}c$ which is in L PL: States w=xyz, $|xy| \le N$, |y| > 0, $xy^{i}z \in L$ for all $i \ge 0$ Me: Choose i = 0. This says that $xz = a^{N-|y|+1}b^{N}c \in L$. But, since |y| > 0, then N- $|y|+1 \le N$, but the number of b's (N) times the number of c's (1) is N and so the number of a's is not sufficient.

Thus, L is not Regular by Pumping Lemma for Regular.

Assignment # 5.1c (M-N)

c. L = { x w x | x, w \in {a,b}⁺ Here |x|>0 and |w|>0 }

I attack this with M-N. Let R_L be the right invariant equivalence relation defined for L by M-H. Consider $[a^ib]$ and $[a^jb]$ i \neq j. $a^iba^i \in L$ but $a^jba^i \notin L$, when j \neq I (b must be the w part and so the x part is all a's before the b and must must the number of a's after the b.. Thus, for any two distinct i,j, i \neq j, $[a^ib] \neq [a^jb]$.

Thus, L is not Regular by Myhill-Nerode Theorem.

Assignment # 5.1c (PL)

c. $L = \{ x w x | x, w \in \{a,b\}^+ \}$

PL: Gives me N>0 associated with L Me: Choose v=a^Nba^N which is in L PL: States v=xyz, $|xy| \le N$, |y| > 0, $xy^iz \in L$ for all i ≥ 0 Me: Choose i = 0. $a^{N-|y|}ba^N \notin L$ since a's before b do match those after b.

Thus, L is not Regular by Pumping Lemma for Regular Languages.

Assignment # 5.2

2. Write a regular (right linear) grammar that generates L = { w | w ∈ {0,1}⁺ and w interpreted as a binary number is divisible by 2 or 3 or both}.

 ${<}0{>} \rightarrow 0 {<}0{>} \mid 1 {<}1{>} \mid \lambda$

<1> → 0 <2> | 1 <3>

```
<\!\!2\!\!> \rightarrow 0 <\!\!4\!\!> \mid 1 <\!\!5\!\!> \mid \lambda
```

```
<\!\!3\!\!> \rightarrow 0 <\!\!0\!\!> \mid 1 <\!\!1\!\!> \mid \lambda
```

```
<\!\!4\!\!> \rightarrow 0 <\!\!2\!\!> \mid 1 <\!\!3\!\!> \mid \lambda
```

```
<5> → 0 <4> | 1 <5>
```

Can reduce to five rules as we showed a 5 state DFA recognizes this language. The trick is to combine rules <0> and <3>, as they do the exact same thing.

Assignment # 5.3

2. Present a Mealy Model finite state machine that reads an input x ∈ {0, 1}⁺ and produces the binary number that represents the result of adding binary 1001 to x (assumes all numbers are positive, including results). Assume that x is read starting with its least significant digit. Examples: 00010 → 01011; 00101 → 01110; 00111 → 10000; 00110 → 01111

8