Given a DFA denoted by the transition table shown below, and assuming that 1 is the start state and $\underline{1}$, $\underline{2}$ and $\underline{4}$ are final states, fill in the equivalent states matrix I have provided. Use this to create an equivalent, minimal state DFA.

	a	b	c						
>1	6	3	2	<u>2</u>	5,6				
2	5	3	1	3	X	X			
3	2	4	5	<u>4</u>	5,6 3,5 X" 1,2	3,5 X"	X		_
<u>4</u>	5	5	1	5	X	X	2,5 X' 1,4	X	
5	5	1	5	6	X	X	2,5 X' 2,4 5,6	X	1,2
6	5	2	6		>1	2	3	<u>4</u>	5

Don't forget to construct and write down your new, equivalent automaton!! Be sure to clearly mark your start state and your final state(s). Note X is for immediate incompatibility; X' is because of an immediate one; X'' is because of an X'.

