
Final Exam Topics 1
• Regular languages

• Decision Problems
• Membership
• Emptiness
• Finiteness
• Σ*
• Equality
• Containment

• Closure
• Union/Concatenation/Star
• Complement
• Substitution/Quotient, Prefix, Infix, Suffix
• Max/Min
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Regular	language	decision	problems

• Every	regular	language	can	be	recognized	by	a	DFA
• Membership	of	a	string,	w,	in	a	DFA’s	language	can	be	determined	by	running	the	
machine	for	|w|	steps	and	seeing	if	it	accepts	or	rejects

• Every	DFA	can	be	reduced	to	a	unique	minimum	state	DFA
• We	can	easily	recognize	if	a	minimized	DFA	accepts	finite	or	infinite	languages,	or	
even	empty	or	Σ*

• We can determine equality of languages by equality of minimized DFAs 
• We can determine containment of B in A by intersecting them and seeing 

the resulting reduced machine is the same as that which accepted A.
• Regular languages are closed under union, concatenation, star, 

intersection, complement, substitution, max and min



Final Exam Topics 2
• Context free languages

• Writing a simple CFG
• Decision Problems

• Membership
• Emptiness
• Finiteness
• Σ* (undecidable)
• Equality (undecidable)
• Containment (undecidable)

• Closure
• Union/Concatenation/Star
• Intersection with Regular
• Substitution/Quotient with Regular, Prefix, Infix, Suffix

• Non-closure
• intersection, complement, quotient, Max/Min

• Pumping Lemma for CFLs
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Final Exam Topics 3

• Chomsky Hierarchy 
(Red involve no constructive questions)

• Regular, CFG, CSG, PSG (type 3 to type 0)
• FSAs, PDAs, LBAs, Turing machines
• Length preservation or increase makes membership in associated 

languages decidable for all but PSGs
• CFLs can be inherently ambiguous but that does not mean a language 

that has an ambiguous grammar is automatically inherently ambiguous
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Context	free	language	decision	problems	

• Every	CFL	can	be	recognized	by	a	PDA
• Membership	of	a	string,	w,	where	|w|=n,	in	a	CFL	can	be	determined	by	using	the	
O(n3)	CKY	algorithm

• There	is	no	way	to	find	a	unique	minimum	PDA	but	you	can	reduce	a	CFG	to	one	
that	has	has	no	useless	rules	or	non-terminals.	With	this	you	can	test	for	
emptiness

• There	is	no	algorithm	to	determine	if	a	CFG	generates	Σ*. However, by reducing 
a grammar we can test for emptiness, finiteness and infiniteness.

• Equality of CFLs is also unsolvable; can just ask if the CFG produces Σ*
• CFLs are closed under union, concatenation, star, substitution, and 

intersection with regular but not under complement, intersection, min or 
max



Final Exam Topics 4
• Computability Theory

• Decision problems: solvable (decidable, recursive), semi-decidable (recognizable, recursively 
enumerable/re, generable), non-re

• A set is re iff it is semi-decidable
• If set is re and complement is also re, set is recursive (decidable)
• Halting problem (K0): diagonalization proof of undecidability

• Set K0 is re but complement is not
• Set K = { f | f(f) converges }
• Algorithms (Total): diagonalization proof of non-re
• Reducibility to show certain problems are not decidable or even non-re
• K and K0 are re-complete – reducibility to show these results
• Rice’s Theorem: All non-trivial I/O properties of functions are undecidable (weak and strong 

versions)
• Use of quantification to discover upper bound on complexity
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Final Exam Topics 5
• Computability  Applied to Formal Grammars 

(Red only results not constructions that lead to these)
• Post Correspondence problem (PCP)

• Definition
• Undecidability (proof was only sketched and is not part of this course)
• Application to ambiguity and non-emptiness of intersections of CFLs and to non-

emptiness of CSLs
• Traces of Turing computations

• Not CFLs
• Single steps are CFLs (use reversal of second configuration)
• Intersections of pairwise correct traces are traces
• Complement of traces (including terminating traces) are CFL
• Use to show cannot decide if CFL, L, is S*
• L= S* and L = L2 are undecidable for CFLs

• PSG can mimic TM, so can generate any re language; thus, membership in PSL 
is undecidable, as is emptiness of PSL.

• All re sets are homomorphic images of CSLs (erase fill character)
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Final Exam Topics 6
• Complexity Theory

• Verifiers versus solvers: P versus NP
• Definitions of NP: verify in deterministic poly time vs solve in non-deterministic 

polynomial time
• Co-P and co-NP; NP-Hard versus NP-Complete
• Basic idea behind SAT as NP-Complete
• Reduction of SAT to 3-SAT to Subset-Sum
• Equivalence of Subset-Sum to Partition
• Relation of Subset-Sum and Partition to multiprocessor scheduling
• Vertex cover, 3-coloring, register allocation, Independent set, 0-1 integer linear 

programming
• Gadgets for above
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NR	(non-recursive)
=	(NRNC	∪ Co-RE)	- REC

RE-
Complete



1. Let set A be recursive, B be re non-recursive and C be non-re. Choosing 
from among (REC) recursive, (RE) re non-recursive, (NR) non-re, 
categorize the set D in each of a) through d) by listing all possible categories. 
No justification is required.
a.) D = ~C RE, NR
b.) D Í (AÈC) REC, RE, NR
c.) D = ~B NR
d.) D = B -A REC, RE



2. Prove that the Halting Problem (the set K0 ) is not recursive (decidable) within any formal model of computation. (Hint: A 
diagonalization proof is required here.) 

Assume we can decide the halting problem.  Then there exists some total function Halt such that
1 if [x] (y) is defined

Halt(x,y) =
0 if [x] (y) is not defined

Here, we have numbered all programs and [x] refers to the x-th program in this ordering.  We can view Halt as a 
mapping from À into À by treating its input as a single number representing the pairing of two numbers via the one-one 
onto function

pair(x,y) = <x,y> = 2x (2y + 1) – 1
with inverses <z>1 = exp(z+1,1) and   <z>2 = ((( z + 1 ) // 2 <z>1 ) – 1 ) // 2

Now if Halt exist, then so does Disagree, where
0 if Halt(x,x) = 0, i.e, if Fx (x) is not defined

Disagree(x) =
µy (y == y+1) if Halt(x,x) = 1, i.e, if Fx (x) is defined

Since Disagree is a program from À into À , Disagree can be reasoned about by Halt.  Let d be such that Disagree = Fd, 
then

Disagree(d) is defined Û Halt(d,d) = 0 ÛFd (d) is undefined Û Disagree(d) is undefined
But this means that Disagree contradicts its own existence.  Since every step we took was constructive, except for the 
original assumption, we must presume that the original assumption was in error.  Thus, the Halting Problem is not 
solvable.



3.Using reduction from the known undecidable HasZero, 
HZ = { f | $x f(x) = 0 }, show the non-recursiveness (undecidability) of the 
problem to decide if an arbitrary recursive function g has the property 
IsZero, Z = { f | "x f(x) = 0 }.
HZ = { f | $x $t [ STP(f, x, t) & VALUE(f, x, t) == 0] }
Let f be the index of an arbitrary effective procedure.
Define gf(y) = 1 - $x $t [ STP(f, x, t) & VALUE(f, x, t) == 0]
If $x f(x) = 0, we will find the x and the run-time t, and so we will 
return 0 (1 – 1)
If "x f(x) ¹ 0, then we will diverge in the search process and never 
return a value.

Thus, f Î HZ iff gf Î Z = { f | "x f(x) = 0 }.







6. Prove that any class of languages, C, closed under union, concatenation, intersection with regular languages, 
homomorphism and substitution (e.g., the Context-Free Languages) is closed under MissingMiddle, where, 
assuming L is over the alphabet S,
MissingMiddle(L) = { xz | $y Î S* such that xyz Î L }
You must be very explicit, describing what is produced by each transformation you apply.

Define the alphabet S’ = { a’ | aÎS }, where, of course, a’ is a “new” symbol, i.e., one not in S.

Define homomorphisms g and h, and substitution f as follows:
g(a) = a’ "aÎS h(a) = a  ;   h(a’) = l "aÎS f(a) = {a, a’ }

"aÎS

Consider R = S* • g(S*) • S* = { x y’ z | x, y, z  ÎS*  and  y’=g(y) ÎS’* }
S* is regular since it is the Kleene star closure of a finite set.
g(S*) is regular since it is the homomorphic image of a regular language.
R is regular as it is the concatenation of regular languages.

Now, f(L) = { f(w) | w Î L } is in C since C is closed under substitution. This language is the set of 
strings in L with randomly selected letters primed. Any string wÎL gives rise to 2|w| strings in f(L).

f(L) Ç R = { x y’ z | x y z Î L and y’=g(y) } is in C since C is closed under intersection with regular 
languages.

MissingMiddle(L) = h(  f(L) Ç R ) = { x z | $y Î S* such that xyz Î L } which is in C, since C is closed 
under homomorphism. Q.E.D.



7. Use PCP to show the undecidability of the problem to determine if the intersection of two context free 
languages is non-empty. That is, show how to create two grammars GA and GB based on some instance P = 
<<x1,x2,…,xn>, <y1,y2,…,yn>> of PCP, such that L(GA) Ç L(GB) ¹ f iff P has a solution. Assume that P is 
over the alphabet S.You should discuss what languages your grammars produce and why this is relevant, but no 
formal proof is required.

GA = ( { A } , S È { [ i ]  | 1≤i≤n } , A , PA } GB = ( { B } , S È { [ i ]  | 1≤i≤n } , B , PB }

PA : A ® xi A [ i ]  |  xi [ i ] PB : A ® yi B [ i ]  |  yi [ i ]

L(GA) = { xi1  xi2 … xip [ip] … [i2] [i1]   | p ³ 1, 1 ≤ it ≤ n, 1 ≤ t ≤ p  }

L(GB) = { yj1  yj2 … yjq [jq] … [j2] [j1]   | q ³ 1, 1 ≤ ju ≤ n, 1 ≤ u ≤ q  }

L(GA)  Ç L(GB) = { w [kr] … [k2] [k1]   | r ³ 1, 1 ≤ kv ≤ n, 1 ≤ v ≤ r  }, where

w = xk1 xk2 … xkr =  yk1 yk2 … ykr

If L(GA)  Ç L(GB) ¹ f then such a w exists and thus k1 , k2 , … , kr is a solution to this instance of PCP. 
This shows that a decision procedure for the non-emptiness of the intersection of CFLs implies a decision 
procedure for PCP, which we have already shown is undecidable. Hence, the non-emptiness of the 
intersection of CFLs is undecidable.  Q.E.D.



8.Consider the set of indices CONSTANT = { f | $K "y [ jf(y) = K ] }. Use Rice’s Theorem to 
show that CONSTANT is not recursive. Hint: There are two properties that must be 
demonstrated.

First, show CONSTANT is non-trivial.
Z(x) = 0 is in CONSTANT
S(x) = x+1 is not in CONSTANT
Thus, CONSTANT is non-trivial

Second, let f, g be two arbitrary computable functions with the same I/O behavior.
That is, "x, if f(x) is defined, then f(x) = g(x); otherwise both diverge, i.e., f(x)­ and 

g(x)­
Now, f Î CONSTANT 

Û $K "x  [ f(x) = K ] by the definition of CONSTANT
Û"x [ g(x) = C ] where C is the instance of K above, since "x [  f(x) = g(x) ]
Û $K "x [ g(x) = K ] from above
Û g Î CONSTANT by the definition of CONSTANT

Since CONSTANT meets both conditions of Rice’s Theorem, it is undecidable.  Q.E.D.



9. Show that CONSTANT ºm TOT, where TOT = { f | "y jf(y)¯ }.

CONSTANT ≤m TOT 
Let f be an arbitrary effective procedure.

Define gf by
gf (0) = f(0)
gf (y+1) = f(y+1) + µ z  [f(y+1) = f(y) ]

Now, if f Î CONSTANT then "y [ f(y)¯ and  [ f(y+1) = f(y) ] ]. 
Under this circumstance, µ z [f(y+1) = f(y) ] is 0 for all y and gf (y) = f(y) for all y. 
Clearly, then gf Î TOT

If, however, f Ï CONSTANT then $y [f(y+1) ¹ f(y) ] or $y f(y)­. 
Choose the least y meeting this condition. 

If f(y)­ then gf (y)­ since f(y) is in gf (y)’s definition (the 1st term).
If f(y)¯ but  [f(y+1) ¹ f(y)] then gf (y)­ since µ z [ f(y+1) = f(y) ]­ (the 2nd term).
Clearly, then gf Ï TOT

Combining these, f Î CONSTANT Û gf Î TOT and thus CONSTANT ≤m TOT



TOT  ≤m CONSTANT 
Let f be an arbitrary effective procedure.

Define gf by gf (y) = f(y) – f(y)
Now, if f Î TOT then "y [ f(y)¯ ] and thus "y gf (y) = 0 . 
Clearly, then gf Î CONSTANT

If, however, f Ï TOT then $y [f(y)­ ] and thus, $y [gf (y)­]. Clearly, 
then gf Ï CONSTANT
Combining these, f Î TOT Û gf Î CONSTANT and thus 
TOT  ≤m CONSTANT

Hence, CONSTANT ºm TOT.  Q.E.D.



10. Why does Rice’s Theorem have nothing to say about each of the following? Explain by showing some 
condition of Rice’s Theorem that is not met by the stated property. 
a.) AT-LEAST-LINEAR = { f | "y jf(y) converges in no fewer than y steps }.

We can deny the 2nd condition of Rice’s Theorem since
Z, where Z(x) = 0, implemented by the TM R converges in one step no matter what x is and hence 
is not in AT-LEAST-LINEAR
Z’, defined by TM L R R, is in AT-LEAST-LINEAR since it takes over 2*|input| steps.

However, "x [ Z(x) = Z’(x) ], so they have the same I/O behavior and yet one is in and the other is 
out of AT-LEAST-LINEAR, denying the 2nd condition of Rice’s Theorem

b.) HAS-IMPOSTER = { f | $ g [ g≠f and "y [ jg(y) = jf(y) ] ] }.

We can deny the 1st condition of Rice’s Theorem since all functions have an imposter. To see this, 
consider, for any function f, the equivalent but distinct function g(x) = f(x) + 0. Thus, HAS-
IMPOSTER is trivial since it is equal to À, the set of all indices.
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Sample	Question#1

1. Given	that	the	predicate	STP and	the	function	VALUE are	
algorithms,	show	that	we	can	semi-decide	

HZ	=	{	f	|	jf evaluates	to	0	for	some	input}

Note:	STP(	f,	x,	s )	is	true	iff jf(x)	converges	in	s or	fewer	steps	and,	
if	so,	VALUE(f,	x,	s)	=	jf(x).		

f	∈HZ	iff∃<x,t>	[	STP(f,x,t)	&	VALUE(F,x,t)=0	]	provides	a	semi-
decision	procedure
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Sample	Questions#2

2. Use	Rice’s	Theorem	to	show	that	HZ is	undecidable,	where	
HZ	=	{	f	|	jf evaluates	to	0	for	some	input}

HZ	is	non-trivial	as	Zero(x)	=	0	∈ HZ	and	S(x)=	x+1	∉ HZ
Let	f,	g	be	two	arbitrary	indices	such	that	Range(f)	=	Range(g)
f	∈ HZ	 iff 0	∈ Range(f) definition	of	HZ

Iff 0	∈ Range(g) as	ranges	are	the	same
iff g	∈ HZ	

Thus,	HZ	undecidable	using	oen of	Rice’s	weaker	versions
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Sample	Questions#3

3. Use	Reduction	from	Halt	to	show	that	HZ is	undecidable,	where	
HZ	=	{	f	|	jf evaluates	to	0	for	some	input}

Let	<f,x>	be	an	arbitrary	index		and	input
Define	∀y	gf,x(y)	=	1-∃<x,t>	[	STP(f,x,t)	&	VALUE(F,x,t)=0	]	
<f,x>	∈ HALT	iff∀y gf,x(y)	=	0;	otherwise	∀y	gf,x(y)	↑
Thus,	<f,x>	∈ HALT	 iff gf,x∈ HZ
As	HALT	≤	HZ,	HZ	must	be	undecidable.	Since	it’s	RE,	it	is	also	RE-
Complete.
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Sample	Question#4

4. Let	P	=	{	f	|	$ x	[	STP(f,	x,	x)	]	}.	Why	does	Rice’s	theorem	not	tell	us	
anything	about	the	undecidability of	P?

It	is	easy	to	show	two	functions,	one	of	which	operates	in	linear	time	
(or	even	constant	time)	and	the	other	in	twice	linear	time,	yet	both	
compute	the	same	function.	A	simple	example	is	a	TM	that	computes	
the	constant	Zero.
R	takes	one	unit	of	time,	independent	of	x,	to	compute	0.
L R R	takes	a	bit	over	2x	time	(really	2x+3)	for	all	values	of	x.
Both	compute	Zero.
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Sample	Question#5

5. Let	S be	an	re	(recursively	enumerable),	non-recursive	set,	and	T be	
an	re,	possibly	recursive	set.	Let	
E	=	{	z	|	z	=	x	+	y,	where	x	Î S	and	y	Î T	}.	
Answer	with	proofs,	algorithms	or	counterexamples,	as	
appropriate,	each	of	the	following	questions:
(a) Can	E be	non	re?	No.	If	T	=	∅ then	E	is	recursive.	
Assume	S	is	non-empty	and	S	and	T	are	enumerated	by	fS,	fT,	resp.	
Then	fE(<x,y>)	=	fS(x)	+	fS(y)	enumerates	E.
(b) Can	E be	re	non-recursive?	Yes.	T	=	{0},	E	=	S
(c) Can	E be	recursive?	Yes,	T=ℵ,	E	=	{	x	|	x	≥	min	value	in	S	}

12/3/17 COT 4210 © UCF



Some	Quantification	Examples

• <f,x>	∈ Halt	⇔∃t	[	STP(f,x,t)	]	 RE
• f	∈ Total	⇔∀x∃t [	STP(f,x,t)	] NRNC
• f	∈ NotTotal⇔∃x∀t [	~STP(f,x,t)	] NRNC
• f	∈ RangeAll⇔∀x∃<y,t>	[	STP(f,y,t)	&VALUE(f,y,t)=x	] NRNC
• f	∈ RangeNotAll⇔∃x∀<y,t>	[STP(f,y,t)	⇒ VALUE(f,y,t)≠x	] NRNC
• f	∈ HasZero⇔∃<x,t>	[	STP(f,x,t)	&	VALUE(F,x,t)=0	] RE
• f	∈ IsZero⇔∀x∃t [	STP(f,x,t)	&	VALUE(F,x,t)=0	] NRNC
• f	∈ Empty	⇔∀<x,t>	[	~STP(f,x,t)	] Co-RE
• f	∈ NotEmpty⇔∃ <x,t>	[	STP(f,x,t)	] RE



More	Quantification	Examples

• f	∈ Identity	⇔∀x∃t [	STP(f,x,t)	&	VALUE(f,x,t)=x	] NRNC
• f	∈ NotIdentity⇔∃x∀t [	~STP(f,x,t)	|	VALUE(f,x,t)≠x	]	or NRNC

∃x∀t [	STP(f,x,t)	⇒ VALUE(f,x,t)≠x	]	
• f	∈ Constant	=	∀<x,y>∃t	[STP(f,x,t)	&	STP(f,y,t)	&	 NRNC

VALUE(f,x,t)=VALUE(f,y,t)]	
• f	∈ Infinite	⇔∀x∃<y,t>	[	y≥x &	STP(f,x,t)	] NRNC
• f	∈ Finite⇔∃x∀<y,t>	[	y<x	|	~STP(f,y,t)	]	or	 NRNC

∃x∀<y,t>	[	STP(f,y,t)	⇒ y<x	]	or	[	y≥x⇒ ~STP(f,y,t) ]	
• f	∈ RangeInfinite⇔∀x∃<y,t>	[	STP(f,y,t)	&	VALUE(f,y,t)≥x	] NRNC
• f	∈ RangeFinite⇔∃x∀<y,t>	[	STP(f,y,t)	⇒ VALUE(f,y,t)<x	] NRNC
• f	∈ Stutter	⇔∃<x,y,t>	[	x≠y &	STP(f,x,t)	&	STP(f,y,t)	& RE

VALUE(f,x,t)	=	VALUE(f,y,t)	]



Even	More	Quantification	Examples

• <f,x>	∈ Fast20	⇔ [	STP(f,x,20)	] REC
• f	∈ FastOne20	⇔∃x	[	STP(f,x,20)	] RE
• f	∈ FastAll20	⇔∀x	[	STP(f,x,20)	] Co-RE
• <f,x,K,C>	∈ LinearKC⇔ [	STP(f,x,K*x+C)	] REC
• <f,K,C>∈ LinearKCOne⇔∃x	[	STP(f,x,K*x+C)	] RE
• <f,K,C>∈ LinearKCAll⇔∀x	[	STP(f,x,K*x+C)	] Co-RE

• None	of	the	above	can	be	shown	undecidable	using	Rice’s	Theorem
• In	fact,	reduction	from	known	undecidables is	also	a	problem.



Some	Reductions	and	Rice	Example

• NotEmpty ≤	Halt
Let	f	be	an	arbitrary	index
Define	∀y	gf(y)	=	∃<x,t>	STP(f,x,t)
f	∈ ENotmpty⇔ <gf,0>	∈ Halt

• Halt	≤	NotEmpty
Let	f,x be	an	arbitrary	index	and	input	value
Define	∀y	gf,x(y)	=	f(x)<f,x>	∈ Halt⇔ gf,x∈ Empty

• Note:	NotEmpty is	RE-Complete
• Rice:	NotEmpty is	non-trivial		Zero∈NotEmpty;	↑∉NotEmpty
Let	f,g be	arbitrary	indices	such	that	Dom(f)=Dom(g)
f	∈NotEmpty⇔ Dom(f)	≠	∅ By	Definition

⇔ Dom(g) ≠	∅ Dom(g)=Dom(f)
⇔ g	∈NotEmpty
Thus,	Rice’s	Theorem	states	that	NotEmpty is	undecidable.



More	Reductions	and	Rice	Example

• Identity	≤	Total
Let	f	be	an	arbitrary	index
Define	gf(x)	=	μy [	f(x)	=	x	]f	∈ Identity	⇔ gf∈ Total

• Total	≤	Identity
Let	f	be	an	arbitrary	index
Define	gf(x)	=	f(x)-f(x)	+	xf	∈ Total	⇔ gf,x∈ Identity

• Rice:	Identity	is	non-trivial		I(x)=x∈Identity;	Zero∉Identity
Let	f,g be	arbitrary	indices	such	that	∀x	f(x)	=	g(x)
f	∈Identity				⇔ ∀x	f(x)=x By	Definition

⇔ ∀x	g(x)=x	 ∀x	g(x)	=	f(x)
⇔ g	∈Identity
Thus,	Rice’s	Theorem	states	that	Identity	is	undecidable



Even	More	Reductions	and	Rice	Example

• Stutter	≤	Halt
Let	f	be	an	arbitrary	index
Define	∀y	gf(y)	=	∃<x,y,t>	[	x≠y &	STP(f,x,t)	&	STP(f,y,t)	&

VALUE(f,x,t)	=	VALUE(f,y,t)	]	
f	∈ Stutter	⇔ <gf,0>	∈ Halt

• Halt	≤	Stutter
Let	f,x be	an	arbitrary	index	and	input	value
Define	∀y	gf,x(y)	=	f(x)<f,x>	∈ Halt⇔ gf,x∈ Stutter

• Note:	Stutter	is	RE-Complete
• Rice:	Stutter	is	non-trivial		Zero∈Stutter;	I(x)=x	∉ Stutter
Let	f,g be	arbitrary	indices	such	that	∀x	f(x)	=	g(x)
f	∈Stutter						⇔ ∃<x,y>	[	x≠y &	f(x)=f(y)	]	 By	Definition

⇔ ∃<x,y>	[	x≠y &	g(x)=g(y)	]	 ∀x	g(x)	=	f(x)
⇔ g	∈Stutter
Thus,	Rice’s	Theorem	states	that	Identity	is	undecidable



Yet	More	Reductions	and	Rice	Example

• Constant	≤	Total
Let	f	be	an	arbitrary	index
Define	gf(0)	=	f(0)gf(y+1)	=	μy [	f(y+1)	=	f(y)	]f	∈ Constant	⇔ gf∈ Total

• Total	≤	Identity
Let	f	be	an	arbitrary	index
Define	gf(x)	=	f(x)-f(x)f	∈ Total	⇔ gf∈ Constant

• Rice:	Constant	is	non-trivial	Zero∈Constant;	I(x)=x	∉ Constant
Let	f,g be	arbitrary	indices	such	that	∀x	f(x)	=	g(x)
f	∈Constant		⇔ ∃C∀x f(x)=C By	Definition

⇔ ∃C∀x g(x)=C	 ∀x	g(x)	=	f(x)
⇔ g	∈Constant
Thus,	Rice’s	Theorem	states	that	Identity	is	undecidable



Last	Reductions	and	Rice	Example

• RangeAll ≤	Total	
Let	f	be	an	arbitrary	index
Define	gf(x)	=	∃y	[	f(y)	=	x	]
f	∈ RangeAll⇔ gf∈ Total

• Total	≤	RangeAll
Let	f	be	an	arbitrary	index
Define	gf(x)	=	f(x)-f(x)	+	xf	∈ Total	⇔ gf∈ RangeAll

• Rice:	RangeAll is	non-trivial	I(x)=x	∈ RangeAll;	Zero	∉ RangeAll
Let	f,g be	arbitrary	indices	such	that	Range(f)	=	Range(g)
f	∈ RangeAll⇔ Range(f)	=	א By	Definition

⇔ Range(f)	=	א Range(g)	=	Range(f)
⇔ g	∈ RangeAll
Thus,	Rice’s	Theorem	states	that	Identity	is	undecidable



NP Co-NP

UNIVERSE	OF	SETS

PNP-
Complete



Complexity	Sample#1
# Concept Description Concept	#

1 Problem	A	is	in	NP The	classic	NP-Complete	problem 10

2 Problem	A	is	in	co-NP A	is	the	problem	TOTAL	(set	of	Algorithms) 4

3 Problem	A	is	in	P A	is	decidable	in	deterministic	polynomial	time 3

4 Problem	A	is	non-RE/non-Co-RE If	B	is	in	NP	then	B	≤PA 9

5 Problem	A	is	NP-Complete A	is	in	RE	and,	if	B	is	in	RE,	then	B	≤mA 8

6 Problem	A	is	RE A	is	verifiable	in	deterministic	polynomial	time	 1

7 Problem	A	is	Co-RE A	is	in	NP	and	if	B	is	in	NP	then	B	≤PA 5

8 Problem	A	is	RE-Complete A	is	semi-decidable	 6

9 Problem	A	is	NP-Hard A	is	the	complement	of	B	and	B	is	RE 7

10 Satisfiability A’s	complement	is	in	NP 2



Sample#2:	3SAT	to	SubsetSum
a b c ~a	+	b	+	~c ~a	+	~b	+	c

a 1 0 0 0 0
~a 1 0 0 1 1
b 0 1 0 1 0
~b 0 1 0 0 1
c 0 0 1 0 1
~c 0 0 1 1 0
C1 0 0 0 1 0
C1’ 0 0 0 1 0
C2 0 0 0 0 1
C2’ 0 0 0 0 1

1 1 1 3 3

(~a + b + ~c) (~a + ~b + c)



Sample#3:	Scheduling

T1 T1 T1 T1 T3 T3 T5 T6 T6 T6 T6 T7 T7 T7 T7 T7 T7 T7 T7

T2 T2 T2 T2 T2 T4 T4 T4 T4 T4 T4 T4

T7 T7 T7 T7 T7 T7 T7 T7 T1 T1 T1 T1 T6 T6 T6 T6

T4 T4 T4 T4 T4 T4 T4 T2 T2 T2 T2 T2 T3 T3 T5

List Schedule (T1,4), (T2,5), (T3,2), (T4,7), (T5,1), (T6,4), (T7,8) 

Sorted List Schedule (T7,8),	(T4,7), (T2,5), (T1,4), (T6,4), (T3,2), (T5,1)



Independent	set	(IS)	is	NP-Complete

• We	represent	each	clause	in	an	instance	of	3SAT	with	a	triangle,	one	node	per	
literal.	The	key	is	that	all	nodes	are	connected	in	a	triangle	of	nodes,	so	the	best	
you	can	do	is	to	choose	one	node	per	clause	to	participate	in	an	independent	set.	
By	adding	an	edge	between	every	instance	of	variable	v	and	every	instance	of	
variable	~v,	we	guarantee	that	we	cannot	choose	nodes	labeled	v	and	~v	as	part	
of	an	independent	set.	Here,	assume	we	have	V	Boolean	variables

• When	the	required	independent	set	must	be	C,	where	C	is	the	number	of	clauses,	
we	must	choose	one	node	per	clause	and	we	must	do	this	in	a	way	so	that	no	
nodes	labeled	with	a	variable	and	its	complement	are	chosen.	That	can	only	be	
done	if	there	is	an	assignment	to	variables	(true	or	false)	that	satisfy	the	original	
instance	of	3SAT.	Thus	IS	is	NP-Hard.	But,	we	can	check	a	proposed	independent	
set	in	time	proportional	to	the	size	of	the	graph	(which	is	actually	linear	in	the	
size	of	the	3SAT	problem).	Thus	IS	is	in	P.	In	conclusion,	IS	is	NP-Complete.



Sample#4:	Independent	Set
(a + ~b + c) (~a + b + ~c) (a + b + c) (~a + b + b)

Place	an	edge	between	every	node	
labeled	V	and	every	node	labeled	~V,	
where	V	can	be	a,	b	or	c.



Vertex	Cover	(VC)	is	NP-Complete
• We	represent	each	clause	(assume	there	are	C	of	them)	in	an	instance	of	3SAT	with	a	triangle,	one	
node	per	literal.	One	key	is	that	two	nodes	in	each	clause	triangle	must	be	chosen	to	cover	the	
three	internal	edges.	We	represent	each	assignment	to	a	variable	v	(assume	there	are	V	variables)	
by	a	pair	of	connected	nodes	labeled	v	and	~v.	The	second	key	is	that	we	must	choose	precisely	
one	of	v	or	~v	for	each	variable	to	cover	the	edge	that	connects	its	pair.	Thus,	the	minimum	cover	
set	contains	2C+V	nodes.	

• We	add	an	edge	from	each	v	and	to	all	literals	v	in	clauses,	and	each	~v	to	all	literals	~v	in	clauses.	
To	cover	all	the	edges	added	here	for	the	variable	nodes,	we	must	choose	nodes	in	each	clause	
that	cover	edges	from	variable	nodes	that	are	not	chosen	in	the	variable	pair.	If	all	clauses	have	at	
least	one	of	these	incoming	edges	already	covered	(we	chose	an	assignment	to	the	variable	that	
matches	a	literal	in	this	clause),	then	we	will	be	able	to	cover	all	internal	edges	in	each	clause	and	
all	edges	entering	the	clause	from	a	variable	pair,	by	just	choosing	two	nodes	in	the	clause.

• Choosing	2C+V	nodes	that	cover	all	edges	can	only	be	done	if	there	is	an	assignment	to	variables	
(true	or	false)	that	satisfy	the	original	instance	of	3SAT.	Thus	VC	is	NP-Hard.	But,	we	can	check	a	
proposed	cover	set	of	vertices	in	time	proportional	to	the	size	of	the	graph	(which	is	actually	
linear	in	the	size	of	the	3SAT	problem).	Thus	VC	is	in	P.	In	conclusion,	VC	is	NP-Complete.



Sample	#	5:	VC	Gadgets



Sample#6:	Vertex	Cover
(a + ~b + c) (~a + b + ~c) (a + b + c) (~a + b + b)

a ~a

b

~c

~b

c
Place	an	edge	between	every	variable	node	labeled	V	and	every	clause	
node	labeled	~V,	where	V	can	be	a,	b	or	c.

Variable	Nodes/Edges

Clause	Nodes/Edges

K	=	2*C+V	=	8+3	=	11



The	meaning	of	“defined”	in	Halt	discussion

• In	the	diagonalization	proof	that	the	Halting	Problem	is	undecidable,	
you	use	the	term	defined,	as	in	Disagree(d)	is	defined	iff Halt(d,d)=0	
iff Disagree(d)	is	undefined.	What	is	its	meaning	in	this	context?

The	word	“defined”	here	means	"converges	and	defines	a	value."	The	
procedure	"least	value	of	y	such	that	y=y+1"	can	never	converge	and	
so	never	defines	a	value.

• Fortunately,	I	will	not	ask	you	to	repeat	this	proof,	but	you	need	to	
understand	its	significance.	That	is,	you	need	to	remember	where	it	
was	used	and	for	what	purposes.



RE	and	Co-RE

• Why	can't	the	complement	of	something	that	is	re	non-recursive	be	
recursive?

• The	reason	is	that	any	set	that	is	RE	and	whose	complement	is	RE,	is	
also	a recursive	set.	Thus,	if	S	is	RE,	non-recursive,	its	
complement must	be	co-RE,	non-recursive.



Characteristic	Function	for	a	Decidable	Set

• By	definition	of	decidable,	S	is	decidable	iff there's	a	characteristic	
function.	Could	you	explain	what	is	a	characteristic	function,	with	
examples?

The	term	"characteristic	function"	for	some	recursive/decidable	set,	
S,	just	refers	to	any	algorithmic	predicate	to	decide	membership	in	S.	
The	term	is	used	as	the	algorithm	"charcaterizes"	S	by	allowing	us	to	
decided	its	membership.



Union	of	sets

• Let	set	A	be	recursive,	B	be	re	non-recursive	and	C	be	non-re,	what	
can	D	be	if	D	is	contained	in	(A	U	C).	

Consider	the	case	where	A	is	the	set	of	natural	numbers,	then	(A	U	C)	
is	the	set	of	all	natural	numbers,	no	matter	what	C	is.	If	D	is	a	subset	
of	the	set	of	natural	numbers	then,	D	can	be	anything.	For	instance,	D	
can	be	empty,	in	which	case	it	is	recursive;	D	could	be	the	set	of	
indices	of	functions	that	halt	on	some	input,	in	which	case	it	is	RE;	D	
could	be	the	set	of	indices	of	algorithms,	in	which	case	it	it	is	non-RE.	
In	fact,	there	are	an	uncountably infinite	number	of	subsets	of	the	
natural	numbers,	so	there	is	no	telling	what	D	might	be.



Phrase	Structured	Grammars

• Are	we	doing	anything	on	phrase	structured	grammars?	

There	will	be	no	PSG's	to	write.	I	never	had	time	to	do	anything	on	
that.	The	only	thing	that	is	critical	is	to	remember	that	the	Phrase	
Structured	Languages	are	exactly	the	RE	sets.



Containment

• You	say	in	the	exam	review	that	containiment is	undecidable	for	CFL's.	But,	
on	the	2nd	exam	the	answer	to	#3	says	that L(G)	contains	and	may	equal	
{λ}	and	that	this	is	a	decidable	problem.	Why	is	this?	

On	the	review	slides,	the	only	place	that	we	said	containment	is	decidable	
is	for	Regular	Languages.	Page	3	explicitly	states	that	containment	id	
undecidable	for	CFLs.	Exam#2	has	no	mention	of	containment.

What	is	.decidable	is	membership.	Membership is	testing	a	single	or	finite	
set	of	strings	for	membership	in	the	language	-- decidable.	Containment	
refers	to	whether	or not	a	language	is	a	subset	of	another.	That	
is undeciadble for	CFLs.	The	proof	is	based	on	the	fact	that	we	cannot	
decide	of	an	arbitrary CFG	if	it	generates	Sigma*.	But	then	we	cannot	
decide	if	Sigma*	is	a	subset	of	some	arbitrary	context-free	language.



Edges	added	to	Graphs	in	IS	and	VC

• On	the	vertex	covering	problem	it	says	to "place	an	edge	between	
every	variable	node	labeled	V	and	every	clause	node	labeled	~V".	
During	your	office	hours,	you	showed	on	example	to	us	of	VC	but	you	
placed	an	edge	between	every	node	labeled	V	and	every	clause	node	
labeled	V	as	well.	Is	there	no	difference	in	the	way	the	connections	
between	clauses	are	made	between	the	triangles	in	Independent	Set	
problems	and	VC	problems?

IS	is	all	v	to	~v. VC	is	v	to ~v	in	the	variable	pair	gadgets	and	v	to	v,	~v	
to	~v	in the	edges	between	the	variable	pair	gadgets	and	the	clause	
gadgets.	As	I	read	my	review,	this	is	exactly	what	it	says.



Pumping	Lemma

• I	noticed	Pumping	Lemma	isn't	on	the	review.	Do	we	need	to	know	
it?

You	need	to	understand	the concepts	of	the	two	Pumping	Lemmas	
but	I	will	not	ask	an	explicit	question	to	apply	either.	By	concepts	I	
mean,	the	essence	of	their	proofs	and	how	they	are	applied.


