COT 4210	Spring 2017
Total Points	Available 67

Midterm 2		
Your Raw Score		

Name:	
Grade:	

2	1.	Let $A = (\{q1, \dots, q10\}, \{0,1\}, q1, \{q7\})$ be some DFA. Assume you have computed the sets, $R^{\frac{1}{1}}$.
		for $0 \le k \le 9$, $1 \le i \le 10$, 1 , $1 \le j \le 10$. How do you compute $L(A) = R^{10}_{1,7}$, based on the previously
		computed values of the R ^k :: ² :5?

I WON'T BE ASKING THIS TYPE OF QUESTION BECAUSE THE CLASS DID WELL ON IT IN EXAM#!

4 2. Write a Context Free Grammar for the language L, where $L = \{ a^i b^j c^k \mid i \le (j + k) \}$

5 3. Assume A and B are arbitrary Context Free languages. Indicate, for each of the following operations, whether the language L is guaranteed to be Context Free (Note: Regular languages are Context Free). No proofs or examples are required.

Operation	Is L guaranteed to be a CFL? (Y or N)
$L \subset A$ (Subset)	
$L = A \cap B$ (Intersection)	
L = A • B (Concatenation)	
$L = A \oplus B (\{ x \mid x \text{ is in either A or B, but not both } \}$	
$L = Max(A) (\{ x \mid x \in A \text{ but no } xy \in A, y > 0 \}$	

8 4. Use the Pumping Lemma for CFLs to show that the following language L is not Context Free.
 L = { aⁿ b^{2ⁿ} | n>0 }. Be explicit as to why each case you analyze fails to be an instance of L. I will do the first two steps for you.

ME: Assume L is Context Free

PL: Provides a whole number N>0 that is the value associated with L based on the Pumping Lemma

- 6 5. Consider some languages **A** and **B** that are both Context Free, and neither is Regular. Define $\mathbf{L} = \mathbf{A} \cup \mathbf{B}$. Give explicit examples of languages **A** and **B**, and explicitly describe **L**, or argue that this is impossible based on some well-known result, for each of the following.
 - a.) L is Regular
 - b.) L is Context Free, non-Regular.
 - c.) L is Context Sensitive, non-Context-Free.

10 6. Present the CKY recognition matrix for the string **abbccc** assuming the Chomsky Normal Form grammar, $G = (\{S, A, B, C, X, Y, Z\}, \{a,b,c\}, R, S)$, specified by the rules R: Note: **abbccc** is in L(G) so that should help you if you make an error and don't see S at bottom of matrix.

$$S \rightarrow AB$$

 $A \rightarrow XA \mid a$
 $B \rightarrow CZ \mid BZ \mid b \mid c$
 $C \rightarrow YB$
 $X \rightarrow a$
 $Y \rightarrow b$
 $Z \rightarrow c$

	a	b	b	c	c	c
1						
2						
3						
4					•	
5				•		
6			•			

A little help from your friends

Non-Terminal	First Symbol in Rules	Second Symbol in Rules
S	None	None
A	$S \rightarrow AB$	$A \rightarrow XA$
В	$B \rightarrow BZ$	$S \rightarrow AB; C \rightarrow YB$
С	$B \rightarrow CZ$	None
X	$A \rightarrow XA$	None
Y	$C \rightarrow YB$	None
Z	None	$B \rightarrow BZ; B \rightarrow CZ$

8 7. Prove that Context-Free Languages are closed under div3 where L is a CFL over the alphabet Σ , and div3(L) = { x | xy ∈ L and |x| modulo 3 = 0 and |y| ∈ {0,1,2} }.

In words, we remove as few characters as needed from the end of a string in L, so the resulting string's length is a multiple of 3.

You may assume substitution $f(a) = \{a, a'\}$, and homomorphisms g(a) = a' and h(a) = a, $h(a') = \lambda$. Here $a \in \Sigma$ and a' is a distinct new character associated with each $a \in \Sigma$.

You must be very explicit, describing what is produced by each transformation you apply and what kind of language results.

12 8. Consider the CFG $G = (\{S, A, B\}, \{a, b\}, R, S)$ where R is:

 $S \rightarrow AB$

 $A \rightarrow aA \mid a$

 $B \rightarrow aBb \mid ab$

In the PDAs below, you may (and are encouraged) to use a transition diagram where transitions have arcs with labels of form $a, \alpha \to \beta$ where $a \in \Sigma \cup \{\lambda\}$, $\alpha, \beta \in \Gamma^*$. Note: This just means that you can use extended stack operations that push more than one symbol onto stack.

a.) Present a pushdown automaton that parses the language L(G) using a top down strategy.

INITIAL CONTENTS OF STACK = _____

- **b.)** Now, using the notation of **ID**s (Instantaneous Descriptions, [q, x, z]), describe how your PDA in (a) accepts strings generated by **G**.
- **c.)** Present a pushdown automaton that parses the language **L(G)** using a bottom up strategy. Note: I am fine with your showing strings that are on top of the stack in either reversed or non-reversed form. INITIAL CONTENTS OF STACK =

d) Now, using the notation of **ID**s (Instantaneous Descriptions, **[q, x, z]**), describe how your PDA in (c) accepts strings generated by **G**.

9. Consider the context-free grammar $G = (\{S, A, B, C, D\}, \{a,b,c\}, R, S)$, where R is:

 $S \rightarrow BC \mid AC \mid ABC$

- $A \rightarrow aA \mid \lambda$
- $B \rightarrow ABb \mid Bb$
- $C \rightarrow bCc \mid bc$
- $D \rightarrow bBc \mid Dc \mid \lambda$
- 3 a.) Remove λ -rules, creating an equivalent grammar G'. Show all rules. Nullable = $\{$

2 b.) Remove all unit rules', creating an equivalent grammar G''. Show all rules. $Unit(S) = \{ \}; Unit(A) = \{ \}; Unit(B) = \{ \}; Unit(C) = \{ \}; Unit(D) = \{$

2 c.) Remove all unproductive symbols, creating an equivalent grammar G". Show all rules.
 Productive = { } } Unproductive = { }

2 **d.**) Remove all unreachable symbols, creating an equivalent grammar G^{iv} . Show all rules. *Unreachable = { }

3 e.) Convert grammar G^{iv} to its Chomsky Normal Form equivalent, G^V. Show all rules.