1. Write a Context Free Grammar for the language
$\mathbf{L}=\left\{\mathbf{a}^{k} b^{m} c^{\mathbf{n}} \mid k=\mathbf{n}+\mathbf{m}\right.$, or $\mathbf{m}=k+\mathbf{n}$, or $\left.\mathbf{n}=k+\mathbf{m}, k>0, m>0, n>0\right\}$.
$S \rightarrow a A c \mid a A^{\prime} b b C^{\prime} c$
$A \rightarrow a A c\left|a A^{\prime} b\right| b C^{\prime} c$
$A^{\prime} \rightarrow a A^{\prime} b \mid \lambda$
$C^{\prime} \rightarrow b C^{\prime} c \mid \lambda$
2. Consider the language
$L=\left\{\mathbf{a}^{\mathbf{n}} \mathbf{b}^{\mathrm{n}!} \mid \mathbf{n > 0}\right\}$.
Use the Pumping Lemma for Context-Free Languages to show that \mathbf{L} is not context-free.
PL: Provides $N>0$
We: Choose $a^{N} b^{N!} \in L$
PL: Splits $a^{N} b^{N!}$ into uvwxy, $|v w x| \leq N,|v x|>0$, such that $\forall i \geq 0 u v^{i} w x^{i} y \in L$
We: Choose $\boldsymbol{i}=2$
Case 1: $v w x$ contains only b's, then we are increasing the number of b's while leaving the number of a's unchanged. In this case $u v^{2} w x^{2} y$ is of form $a^{N} b^{N!+c}, c>0$ and this is not in L.
Case 2: vwx contains some a's and maybe some b's. Under this circumstances $u v^{2} w x^{2} y$ has at least $N+1$ a's and at most $N!+N-1$ b's. But $(N+1)!=N!(N+1)=N!* N+N \geq N!+N>N!+N-1$ and so is not in L.
Cases 1 and 2 cover all possible situations, so L is not a CFL.
3. Present the CKY recognition matrix for the string bbabb assuming the Chomsky Normal Form grammar, $\mathbf{G}=(\{\mathbf{S}, \mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}\},\{\mathbf{a}, \mathbf{b}\}, \mathbf{R}, \mathbf{S})$, specified by the rules \mathbf{R} :
$\mathbf{S} \rightarrow \mathbf{A B}|\mathbf{B A}| \mathbf{B D}$
$\mathrm{A} \rightarrow \mathrm{CS}|\mathrm{CD}| \mathrm{a}$
$\mathbf{B} \rightarrow \mathbf{D S} \mid \mathbf{b}$
$\mathrm{C} \rightarrow \mathrm{a}$
D \rightarrow b

1	\mathbf{b}	\mathbf{b}	\mathbf{a}	\mathbf{b}	\mathbf{b}
$\mathbf{1}$	BD	BD	AC	BD	BD
2	S	S	SA	S	
3	B	SB	SA		
4	SB	SB			
5	SB				

4. Choosing from among (\mathbf{Y}) yes, $\mathbf{(N)} \mathbf{N o}$, categorize each of the following closure properties. No proofs are required.

Problem / Language Class (C)	Regular	Context Free
Closed under union with Context Free languages?	N	Y
Closed under quotient with languages of its own class (C), i.e., L1/L2	Y	N
Closed under difference with languages of its own class (C), i.e., (difference (L1, L2) = L1 - L2)?	Y	N
Closed under intersection with languages of its own class?	Y	N

5. Prove that any class of languages, \boldsymbol{C}, closed under union, concatenation, intersection with regular languages, homomorphism and substitution (e.g., the Context-Free Languages) is closed under Erase Middle with Regular Sets (em), where $\mathbf{L} \in \boldsymbol{C}, \mathbf{R}$ is Regular, \mathbf{L} and \mathbf{R} are over the alphabet $\boldsymbol{\Sigma}$, and $\mathbf{L} \mathbf{e m} \mathbf{R}=\left\{\mathbf{x z} \mid \mathbf{x}, \mathbf{z} \in \boldsymbol{\Sigma}^{+}\right.$and $\exists \mathbf{y} \in \mathbf{R}$, such that $\left.\mathbf{x y z} \in \mathbf{L}\right\}$. You may assume substitution $\mathbf{f}(\mathbf{a})$ $=\left\{\mathbf{a}, \mathbf{a}^{\prime}\right\}$, and homomorphisms $\mathbf{g}(\mathbf{a})=\mathbf{a}^{\prime}$ and $\mathbf{h}(\mathbf{a})=\mathbf{a}, \mathbf{h}\left(\mathbf{a}^{\prime}\right)=\boldsymbol{\lambda}$. Here $\mathbf{a} \in \boldsymbol{\Sigma}$ and \mathbf{a}^{\prime} is a distinct new character associated with each $\mathbf{a} \in \boldsymbol{\Sigma}$.
You must be very explicit, describing what is produced by each transformation you apply.
Lem $R=h\left(f(L) \cap \Sigma^{+} g(R) \Sigma^{+}\right)$
$f(L)=\{\underline{w} \mid w \in L\}$ where \underline{w} has some (or none) of its letters primed. $f(L)$ is a CFL since CFLs are closed under substitution.
$g(R)=\left\{y^{\prime} \mid y \in R\right\}$ where y ' has all of its letter primed. $g(R)$ is Regular since Regular languages are closed under homomorphism.
$\Sigma^{+} g(R) \Sigma^{+}=\left\{x y ’ z \mid x, z \in \Sigma^{+}\right.$and $y \in R$, This is a Regular language since Regular languages are closed under concatenation.
$f(L) \cap \Sigma^{+} g(R) \Sigma^{+}=\left\{x y^{\prime} z \mid x y z \in L\right.$ and $\left.y \in R\right\}$. This is a CFL since CFLs are closed under intersection with Regular.
L em $R=h\left(f(L) \cap \Sigma^{+} g(R) \Sigma^{+}=\{x z \mid \exists y \in R\right.$ where $x y z \in L\}$ is a CFL since CFLs are closed under homomorphism.
6. Consider the $\mathrm{CFGG}=(\{\mathbf{S}, \mathbf{T}\},\{\mathbf{a}, \mathbf{b}\}, \mathbf{R}, \mathbf{S})$ where \mathbf{R} is:
$\mathbf{S} \rightarrow$ a TT|TS|a
$\mathbf{T} \rightarrow \mathbf{b S T |} \mathbf{b}$
a.) Present a pushdown automaton that accepts the language generated by this grammar. You may (and are encouraged) to use a transition diagram where transitions have arcs with labels of form $\mathbf{a}, \boldsymbol{\alpha} \rightarrow \boldsymbol{\beta}$ where $\mathbf{a} \in \Sigma \cup\{\lambda\}, \alpha, \beta \in \Gamma^{*}$. Note: I am encouraging you to use extended stack operations.

What parsing technique are you using? (Circle one) top-down or bottom-up
How does your PDA accept? (Circle one) final state or empty stack or final state and empty stack
What is the initial state?
What is the initial stack content?
What are your final states (if any)?

Or can have $\underset{\mathbf{a}, \mathbf{S}, \mathbf{T}}{\boldsymbol{a} \rightarrow \mathbf{T T} \mid \lambda ; \lambda, \mathbf{S T} \rightarrow \mathbf{T S},}$
$\mathbf{b}, \mathbf{T} \rightarrow \mathbf{S T} \mid \lambda$

What parsing technique are you using? (Circle one) top-down or bottom-up
How does your PDA accept? (Circle one) final state or empty stack or final state and empty stack What is the initial state?
What is the initial stack content?
What are your final states (if any)?

b.) Now, using the notation of IDs (Instantaneous Descriptions, [q, $\mathbf{x}, \mathbf{z}]$), describe how your PDA accepts strings generated by \mathbf{G}.
$[q, w, \$] \Rightarrow^{*}[f, \lambda, \lambda]$ if by final state and empty stack (my solution on (a) Bottom-Up)
$[q, w, S] \Rightarrow^{*}[q, \lambda, \lambda]$ if by empty stack (my solution on (a) Top-Down)
7. Consider the context-free grammar $\mathbf{G}=(\{\mathbf{S}, \mathbf{A}, \mathbf{B}\},\{\mathbf{a}, \mathbf{b}\}, \mathbf{R}, \mathbf{S})$, where \mathbf{R} is:

$$
\begin{aligned}
& \mathbf{S} \rightarrow \mathbf{S A B} \mid \mathbf{B A} \\
& \mathbf{A} \rightarrow \mathbf{A B} \mid \mathbf{a} \\
& \mathbf{B} \rightarrow \mathbf{b S}|\mathbf{b}| \lambda
\end{aligned}
$$

a.) Remove all $\boldsymbol{\lambda}$-rules from \mathbf{G}, creating an equivalent grammar \mathbf{G}^{\prime}. Show all rules.

$$
\begin{aligned}
& \text { Nullable }=\{B\} \\
& \begin{array}{l}
G \\
\prime
\end{array} \\
& S \rightarrow S A B|S A| B A \mid A \\
& A \rightarrow A B \mid a \\
& B \rightarrow b S \mid b
\end{aligned}
$$

b.) Remove all unit rules from G', creating an equivalent grammar G', Show all rules.
$\operatorname{Unit}(S)=\operatorname{Chain}(S)=\{S, A\} ; \operatorname{Unit}(A)=\{A\} ; \operatorname{Unit}(B)=\{B\}$
G':
$S \rightarrow S A B|S A| B A|A B| a$
$A \rightarrow A B \mid a$
$B \rightarrow b S \mid b$
c.) Convert grammar G', to its Chomsky Normal Form equivalent, $\mathbf{G}^{\prime}{ }^{\prime}$. Show all rules. $G^{\prime \prime}$:
$S \rightarrow S<A B>|S A| B A|A B| a$
$A \rightarrow A B \mid a$
$B \rightarrowS \mid b$
$<A B>\rightarrow A B$
$\rightarrow b$
In exam I may have some Unproductive non-terminals and some Unreachable ones.

