Midterm 2

Your Raw Score

Name: KEY
Grade:

2 1. Let $A=(\{\mathbf{q} \mathbf{1}, \ldots \mathbf{q 1 0}\},\{\mathbf{0}, \mathbf{1}\}, \mathbf{q} \mathbf{1},\{\mathbf{q} 7\})$ be some DFA. Assume you have computed the sets, $\mathbf{R}_{\mathbf{i}, \mathbf{j}}$, for $\mathbf{0} \leq \mathbf{k} \leq \mathbf{9}, \mathbf{1} \leq \mathbf{i} \leq \mathbf{1 0}, \mathbf{1}, \mathbf{1} \leq \mathbf{j} \leq \mathbf{1 0}$. How do you compute $\mathbf{L}(\mathbf{A})=\mathbf{R}^{\mathbf{1 0}} \mathbf{1 , 7}$, based on the previously computed values of the $\mathbf{R}_{\mathbf{i}, \mathbf{j}}$'s?
$\mathbf{R}^{10}{ }_{1,7}=\mathbf{R}^{\mathbf{9}}{ }_{1,7}+\mathbf{R}^{\mathbf{9 0}}{ }_{1,10}\left(\mathbf{R}_{\mathbf{1 0}, 10}\right)^{*} \mathbf{R}^{\mathbf{9}}{ }_{10,7}$
2. Write a Context Free Grammar for the language \mathbf{L}, where

$$
\begin{aligned}
\mathbf{L}= & \left\{\mathbf{a}^{\mathbf{i}} \mathbf{b}^{\mathbf{j}} \mathbf{c}^{\mathbf{k}} \mid \mathbf{i} \leq(\mathbf{j}+\mathbf{k})\right\} \\
& \mathbf{S} \rightarrow \mathbf{a S c}|\mathbf{S c}| \mathbf{A} \\
& \mathbf{A} \rightarrow \mathbf{a} \mathbf{A}|\mathbf{A b}| \lambda
\end{aligned}
$$

3. Assume A and B are arbitrary Context Free languages. Indicate, for each of the following operations, whether the language \mathbf{L} is guaranteed to be Context Free (Note: Regular languages are Context Free). No proofs or examples are required.

Operation	Is L guaranteed to be a CFL? (Y or N)
$\mathbf{L} \subset \mathbf{A}$ (Subset)	N
$\mathbf{L}=\mathbf{A} \cap \mathbf{B}$ (Intersection)	N
$\mathbf{L}=\mathbf{A} \bullet \mathbf{B}$ (Concatenation)	Y
$L=A \oplus B(\{x \mid x$ is in either A or B, but not both \}	N
$L=\operatorname{Max}(\mathbf{A})(\{x \mid x \in A$ but no $x y \in A,\|y\|>0\}$	N

8 4. Use the Pumping Lemma for CFLs to show that the following language \mathbf{L} is not Context Free. $\mathbf{L}=\left\{\mathbf{a}^{\mathbf{n}} \mathbf{b}^{\mathbf{2}^{\mathbf{n}}} \mid \mathbf{n}>\mathbf{0}\right\}$. Be explicit as to why each case you analyze fails to be an instance of \mathbf{L}. I will do the first two steps for you.

ME: Assume L is Context Free
PL: Provides a whole number $N>0$ that is the value associated with L based on the Pumping Lemma
ME: Choose $w=a^{N} b^{2^{N}}=u v w x y,|v w x| \leq N,|v|+|x|>0$, and $\forall i u v^{i} w x^{i} y \in L$
PL:
Case1: Assume vwx is over a's and perhaps b's. This means that vwx must contain at least one a and at most N-1 b 's. Let $i=2$. Assuming the case where it has just one a, the string $u v^{2} w x^{2} y$ would start with $N+1$ a's and so must have $2^{N+1} b$'s.
Now, 2^{N} is always greater than N, for $N>0$, so $2^{N+1}=2^{N}+2^{N}$ is greater than $2^{N}+N$ which is greater than $2^{N}+N-1$. Thus, there are not sufficient number of b's to accommodate number of a's and so $u v^{2} w x^{2} y \notin L$. Case2: Assume $v w x$ is over only b 's. Let $i=2$. Then $u v^{2} w x^{2} y=a^{N} b^{2^{N}+|v x|}$, where $|v x|>0$ and so there are too many b's relative to the number of a 's and so $u v^{2} w x^{2} y \notin L$.

Cases 1 and 2 cover all possibilities, so Lis not a CFL.

6 5. Consider some languages \mathbf{A} and \mathbf{B} that are both Context Free, and neither is Regular. Define $\mathbf{L}=\mathbf{A} \cup \mathbf{B}$. Give explicit examples of languages \mathbf{A} and \mathbf{B}, and explicitly describe \mathbf{L}, or argue that this is impossible based on some well-known result, for each of the following.
a.) \mathbf{L} is Regular

$$
A=\left\{a^{n} b^{m} \mid m \geq n, m, n \geq 0\right\} ; B=\left\{a^{n} b^{m} \mid m \leq n, m, n \geq 0\right\} ; L=A \cup B=a^{*} b^{*}
$$

b.) \mathbf{L} is Context Free, non-Regular.

$$
A=\left\{a^{n} b^{n} \mid, n \geq 0\right\} ; B=A ; L=A \cup B=A==\left\{a^{n} b^{n} \mid, n \geq 0\right\}
$$

c.) \mathbf{L} is Context Sensitive, non-Context-Free.

That is impossible as CFLs are known to be closed under union. The proof is trivial when employing CFGs.

10 6. Present the CKY recognition matrix for the string abbcce assuming the Chomsky Normal Form grammar, $\mathbf{G}=(\{\mathbf{S}, \mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{X}, \mathbf{Y}, \mathbf{Z}\},\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}, \mathbf{R}, \mathbf{S})$, specified by the rules \mathbf{R} : Note: abbcce is in $\mathbf{L}(\mathbf{G})$ so that should help you if you make an error and don't see \mathbf{S} at bottom of matrix.

$$
\begin{aligned}
& \mathbf{S} \rightarrow \mathbf{A B} \\
& \mathbf{A} \rightarrow \mathbf{X A} \mid \mathbf{a} \\
& \mathbf{B} \rightarrow \mathbf{C Z}|\mathbf{B Z}| \mathbf{b} \mid \mathbf{c} \\
& \mathbf{C} \rightarrow \mathbf{Y B} \\
& \mathbf{X} \rightarrow \mathbf{a} \\
& \mathbf{Y} \rightarrow \mathbf{b} \\
& \mathbf{Z} \rightarrow \mathbf{c}
\end{aligned}
$$

1	\mathbf{a}	\mathbf{b}	\mathbf{b}	\mathbf{c}	\mathbf{c}	\mathbf{c}
$\mathbf{1}$	$A X$	$B Y$	$B Y$	$B Z$	$B Z$	$B Z$
2	S	C	$B C$	B	B	
3		$B C$	$B C$	B		
4	S	$B C$	$B C$			
5	S	$B C$				
6	S					

A little help from your friends

Non-Terminal	First Symbol in Rules	Second Symbol in Rules
\mathbf{S}	None	None
\mathbf{A}	$\mathbf{S} \rightarrow \mathbf{A B}$	$\mathbf{A} \rightarrow \mathbf{X A}$
\mathbf{B}	$\mathbf{B} \rightarrow \mathbf{B Z}$	$\mathbf{S} \rightarrow \mathbf{A B} ; \mathbf{C} \rightarrow \mathbf{Y B}$
\mathbf{C}	$\mathbf{B} \rightarrow \mathbf{C Z}$	None
\mathbf{X}	$\mathbf{A} \rightarrow \mathbf{X A}$	None
\mathbf{Y}	$\mathbf{C} \rightarrow \mathbf{Y B}$	None
\mathbf{Z}	None	$\mathbf{B} \rightarrow \mathbf{B Z ;} \mathbf{B} \rightarrow \mathbf{C Z}$

7. Prove that Context-Free Languages are closed under $\operatorname{div} \mathbf{3}$ where \mathbf{L} is a CFL over the alphabet $\boldsymbol{\Sigma}$, and $\operatorname{div} 3(L)=\{x \mid x y \in L$ and $|x|$ modulo $3=0$ and $|y| \in\{0,1,2\}\}$.
In words, we remove as few characters as needed from the end of a string in \mathbf{L}, so the resulting string's length is a multiple of $\mathbf{3}$.
You may assume substitution $\mathbf{f}(\mathbf{a})=\left\{\mathbf{a}, \mathbf{a}^{\prime}\right\}$, and homomorphisms $\mathbf{g}(\mathbf{a})=\mathbf{a}^{\prime}$ and $\mathbf{h}(\mathbf{a})=\mathbf{a}, \mathbf{h}\left(\mathbf{a}^{\boldsymbol{\prime}}\right)=\boldsymbol{\lambda}$.
Here $\mathbf{a} \in \boldsymbol{\Sigma}$ and \mathbf{a}^{\prime} is a distinct new character associated with each $\mathbf{a} \in \boldsymbol{\Sigma}$.
You must be very explicit, describing what is produced by each transformation you apply and what kind of language results.
$\operatorname{div} 3(L)=h(f(L) \cap((\Sigma \Sigma \Sigma) * g(\{\lambda\} \cup \Sigma \cup \Sigma \Sigma)))$
First, all finite sets are Regular and Regular are closed under concatenation and union, so $\Sigma \Sigma \Sigma$ is Regular as is $(\{\lambda\} \cup \Sigma \cup \Sigma \Sigma)$). Next Regular are closed under Kleene star, homomorphism and, again concatenation, so $((\Sigma \Sigma \Sigma) * g(\{\lambda\} \cup \Sigma \cup \Sigma \Sigma))$ is Regular. Second, Context Free are closed under homomorphism, substitution and intersection with regular sets, so $f(L) \cap((\Sigma \Sigma \Sigma) * g(\{\lambda\} \cup \Sigma \cup \Sigma \Sigma))$ and $h(f(L) \cap((\Sigma \Sigma \Sigma) * g(\{\lambda\} \cup \Sigma \cup \Sigma \Sigma)))$ are both Context Free.
Now, $\left((\Sigma \Sigma \Sigma)^{*} g(\{\lambda\} \cup \Sigma \cup \Sigma \Sigma)\right)=\left\{x y^{\prime} \mid x y \in \Sigma^{*}\right.$ and $|x|$ modulo $3=0$ and $\left.|y| \in\{0,1,2\}\right\}$
$f(L)=\{f(\underline{w}) \mid w \in L\}$.
So $f(L) \cap((\Sigma \Sigma \Sigma) * g(\{\lambda\} \cup \Sigma \cup \Sigma \Sigma))=\{x y ’ \mid x y \in L$ and $|x|$ modulo $3=0$ and $|y| \in\{0,1,2\}\}$
Thus, $h(f(L) \cap((\Sigma \Sigma \Sigma) * g(\{\lambda\} \cup \Sigma \cup \Sigma \Sigma)))=\{x \mid x y \in L$ and $|x|$ modulo $3=0$ and $|y| \in\{0,1,2\}\}$. This is precisely div3(L) so CFLs are closed under div3.

12 8. Consider the $\operatorname{CFG} \mathbf{G}=(\{\mathbf{S}, \mathbf{A}, \mathbf{B}\},\{\mathbf{a}, \mathbf{b}\}, \mathbf{R}, \mathbf{S})$ where \mathbf{R} is:
$\mathbf{S} \rightarrow \mathrm{AB}$
$A \rightarrow a A \mid a$
$\mathrm{B} \rightarrow \mathbf{a B b} \mid \mathbf{a b}$
In the PDAs below, you may (and are encouraged) to use a transition diagram where transitions have arcs with labels of form $\mathbf{a}, \boldsymbol{\alpha} \rightarrow \boldsymbol{\beta}$ where $\boldsymbol{a} \in \boldsymbol{\Sigma} \cup\{\lambda\}, \boldsymbol{\alpha}, \boldsymbol{\beta} \in \Gamma^{*}$. Note: This just means that you can use extended stack operations that push more than one symbol onto stack.
a.) Present a pushdown automaton that parses the language $\mathrm{L}(\mathrm{G})$ using a top down strategy.

INITIAL CONTENTS OF STACK $=\underline{S}$

b.) Now, using the notation of IDs (Instantaneous Descriptions, [q, \mathbf{x}, \mathbf{z}]), describe how your PDA accepts strings generated by \mathbf{G}.
$|q, w, S| \mid-{ }^{*}[q, \lambda, \lambda]$
c.) Present a pushdown automaton that parses the language $\mathbf{L}(\mathbf{G})$ using a bottom up strategy. Note: I am fine with your showing strings that are on top of the stack in either reversed or non-reversed form.
INITIAL CONTENTS OF STACK $=\$$

d) Now, using the notation of IDs (Instantaneous Descriptions, $[\mathbf{q}, \mathbf{x}, \mathbf{z}]$), describe how your PDA accepts strings generated by \mathbf{G}.
$[\mathrm{q}, \mathrm{w}, \$] \mid-{ }^{*}[\mathrm{f}, \lambda, \lambda \mid$
9. Consider the context-free grammar $\mathbf{G}=(\{\mathbf{S}, \mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}\},\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}, \mathbf{R}, \mathbf{S})$, where \mathbf{R} is:
$\mathbf{S} \rightarrow \mathbf{B C}|\mathrm{AC}| \mathrm{ABC}$
$\mathbf{A} \rightarrow \mathbf{a A} \mid \lambda$
$\mathbf{B} \rightarrow \mathbf{A B b} \mid \mathbf{B b}$
$\mathrm{C} \rightarrow \mathrm{bCc} \mid \mathrm{bc}$
$\mathrm{D} \rightarrow \mathrm{bBc}|\mathrm{Dc}| \lambda$
3 a.) Remove $\boldsymbol{\lambda}$-rules from \mathbf{G}, creating an equivalent grammar \mathbf{G}^{\prime}. Show all rulesNullable $=\{\boldsymbol{A}, \boldsymbol{D}$

$$
\begin{aligned}
& S \rightarrow B C|A C| A B C \mid C \\
& A \rightarrow a A \mid a \\
& B \rightarrow A B b \mid B b \\
& C \rightarrow b C c \mid b c \\
& D \rightarrow b B c|D c| c
\end{aligned}
$$

b.) Remove all unit rules from \mathbf{G}^{\prime}, creating an equivalent grammar \mathbf{G}^{\prime} '. Show all rules.
$\operatorname{Chain}(S)=\{S, C\} ; \operatorname{Chain}(A)=\{A\} ; \operatorname{Chain}(B)=\{B\} ; \operatorname{Chain}(C)=\{C\} ; \operatorname{Chain}(D)=\{D\}$
$S \rightarrow B C|A C| A B C|b C c| b c$
$A \rightarrow \boldsymbol{A} \mid \boldsymbol{a}$
$B \rightarrow A B b \mid B b$
$C \rightarrow b C c \mid b c$
$D \rightarrow b B c|D c| c$
c.) Remove all unproductive symbols, creating an equivalent grammar $\mathbf{G} \boldsymbol{\prime}$. Show all rules.

Productive $=\{S, A, C, D\} ;$ Unproductive $=\{B\}$
$S \rightarrow A C|b C c| b c$
$A \rightarrow \boldsymbol{A} \mid \boldsymbol{a}$
$C \rightarrow b C c \mid b c$
$D \rightarrow \boldsymbol{D} \mid \boldsymbol{c}$
2
d.) Remove all unreachable symbols, creating an equivalent grammar $\mathbf{G}^{\text {iv }}$. Show all rules.

$$
\begin{aligned}
& \text { Unreachable }=\{D\} \\
& S \rightarrow A C|b C c| b c \\
& A \rightarrow a A \mid a \\
& C \rightarrow b C c \mid b c
\end{aligned}
$$

3 e.) Convert grammar $\mathbf{G}^{\text {iv }}$ to its Chomsky Normal Form equivalent, $\mathbf{G}^{\mathbf{v}}$. Show all rules.

$$
\begin{aligned}
& S \rightarrow A C|<b C><c>|<c> \\
& A \rightarrow<\boldsymbol{a}>\boldsymbol{A} \mid \boldsymbol{a} \\
& C \rightarrow<\boldsymbol{C}><\boldsymbol{c}>\mid<\boldsymbol{c}> \\
& <\boldsymbol{b} \boldsymbol{C}>\rightarrow<\boldsymbol{b}>\boldsymbol{C} \\
& <\boldsymbol{a}>\rightarrow \boldsymbol{a} \\
& <\boldsymbol{b}>\rightarrow \boldsymbol{b} \\
& <\boldsymbol{c}>\rightarrow \boldsymbol{c}
\end{aligned}
$$

