
COT 4210 Fall 2016 Final Exam Name: KEY

Generally useful information.

• The notation z = <x,y> denotes some 1-1 onto pairing function with inverses
x = <z>1 and y = <z>2.

• The minimization notation µ y [P(…,y,…)] means the least y (starting at 0) such that P(…,y,…)
is true.

• A function P is a predicate if it is a logical function that returns either 1 (true) or 0 (false). Thus,
P(x) means P evaluates to true on x, but we can also take advantage of the fact that true is 1 and
false is 0 in formulas like y ´ P(x), which would evaluate to either y (if P(x)) or 0 (if not P(x)).

• The tilde symbol, ~, means the complement. Thus, set ~S is the set complement of set S, and the
predicate ~P(x) is the logical complement of predicate P(x).

• A set S is recursive (decidable) if S has a total recursive characteristic function cS, such that
x Î S Û cS(x). Note cS is a total predicate. Thus, it evaluates to 0 (false), iff x Ï S.

• When I say a set S is re, unless I explicitly say otherwise, you may assume any of the following
equivalent characterizations:
1. S is either empty or the range of a total recursive function (algorithm) fS.

2. S is the domain of a partial recursive function (one that may diverge on some input) gS.
3. S is the range of a partial recursive function (one that may diverge on some input) hS.

4. S is recognizable by a Turing Machine.
5. S is the language generated by a phrase structured grammar.

• If I say a function g is partially computable, then there is an index g (I know that’s overloading,
but that’s okay as long as we understand each other), such that jg(x) = j(g, x) = g(x). Here j is a
universal partial recursive function (an interpreter).
Moreover, there is a primitive recursive predicate STP, such that
STP(g, x, t) is 1 (true), just in case g, started on x, halts in t or fewer steps.
STP(g, x, t) is 0 (false), otherwise.
Finally, there is another primitive recursive function VALUE, such that
VALUE(g, x, t) is g(x), whenever STP(g, x, t).
VALUE(g, x, t) is defined but meaningless if ~STP(g, x, t).

• The notation f(x)¯ means that f converges when computing with input x, but we don’t care about
the value produced. In effect, this just means that x is in the domain of f.

• The notation f(x) means f diverges when computing with input x. In effect, this just means that
x is not in the domain of f.

• The Halting Problem for any effective computational system is the problem to determine of an
arbitrary effective procedure f and input x, whether or not f(x)¯. The set of all such pairs is a
classic re non-recursive one. The set of all such <f,x> is denoted K0 or HALT. A related set K is
the set of all f that halt on their own indices. Thus, K = { f | jf(f) ¯ } and K0 = { <f,x> | jf(x) ¯ }

• The Uniform Halting Problem is the problem to determine of an arbitrary effective procedure f,
whether or not f is an algorithm (halts on all input). The set of all such function indices is a
classic non-re one and is often called TOTAL. It can be described as { f | "x jf(x) ¯ }.

• Remember that Context Free Languages can be generated by Context Free Grammars and
recognized by non-deterministic Pushdown Automata.

• Remember that Context Sensitive Grammar rules are non-length reducing, but Phrase Structured
Grammars may have length-reducing rules. Also, recall that Context Sensitive Languages are
generated by Context Sensitive Grammars and recognized by Linear Bounded Automata. Phrase
Structured Languages are generated by Phrase Structured Grammars and recognized by Turing
Machines.

• The language {ww | w is a word in some alphabet with more than one letter} is not a CFL.
The language {anbncn | n³0 } is not a CFL. Both of these are, however, CSLs. The language
{ wwR | w is a word in some alphabet with more than one letter} is a CFL, but is not Regular.
The language {anbn | n³0 } is also a CFL, but is not Regular.

• The Post Correspondence Problem (PCP) is known to be undecidable. This problem is
characterized by instances that are described by a finite alphabet, S, a number n>0 and two n-ary
sequences of non-empty words <x1,x2,…,xn>, <y1,y2,…,yn>, each in S+. The question is whether
or not there exists a sequence, i1,i2,…,ik, such that 1≤ij≤n, 1≤j≤k, and
xi1xi2

…xik = yi1yi2
…yik

• When I ask for a reduction of one set of indices to another, the formal rule is that you must
produce a computable function that takes an index and produces another index having whatever
property you require. However, I allow some laxness here. For example, you can start with a
function, given its index, and constructively produce another function, knowing it will have a
computable index.

• When I ask you to show one set of indices, A, is many-one reducible (or simply reducible) to
another, B, denoted A ≤m B, you must demonstrate a total computable function f, such that
x Î A Û f(x) Î B. The stronger relationship that A and B are many-one equivalent, A ºm B,
requires that you show A ≤m B and B ≤m A.

• The related notions of polynomial reducibility and equivalence require that the reducing
function, f above, be computable in polynomial time in the size of the instance of the element
being checked. The notation just replaces the m with a p, as in A ≤p B and A ºp B.

• A decision problem A is in P if it can be solved by a deterministic Turing machine in
polynomial time.

• A decision problem A is in NP if it can be solved by a non-deterministic Turing
machine in polynomial time. Alternatively, A is in NP if a proposed proof of any
instance having answer yes can be verified by a deterministic Turing machine in
polynomial time.

• A decision problem A is NP-complete if and only if it is in NP and, for any problem
B in NP, it is the case that B ≤p A.

COT 4210 Fall 2016 Final Exam Name: KEY
Total Points Available 80 Your Raw Score Grade

4 1. Choosing from Regular (REG), Context Free (CFL) and Context Sensitive (CSL), categorize each
of the following closure properties. No proofs are required. In each consider R1 and R2 to be
Regular and L1 and L2 to be CFLs.

Set / Language Class L is ?

L = L1ÇL2 CSL

L = L1/R1 CFL

L = R1/R2 REG

L = R1 – L1 CSL

4 2. Write a Context Free Grammar for the language

 L = { ak bm cn | k = m+n, m>0, n>0 }.

G = ({S,T}, {a,b,c}, R, S)
R: S ® a S c | a T c

T ® a S b | a b

6 3. Choosing from among (D) decidable, (U) undecidable, categorize each of the following decision
problems about grammars, G, and their associated languages, L(G). No proofs are required. Note:
Read Ê as “contains and may equal.”

Problem / Grammar
Class of G

Regular
(Right Linear)

Context Free Context
Sensitive

Phrase
Structured

L(G) Ê {l}? D D D U

L(G) is infinite? D D U U

L(G) = S* ? D U U U

COT 4210 Discrete II – 2 – Fall 2016 Final Exam – Hughes

5 4. Use the Pumping Lemma for context-free languages to show that L = { an bn cn2 | n>0} is not

context-free. Note: This is the same language as in #4. I will give you a good head start.
We: Posit that L = { an bn cn2 | n>0} is a Context-Free Language
P.L.: Provides N>0
We: Choose aN bN cN2 in L
 (You can choose a string other than this, but make that clear if you do so.)
P.L.: Tells us aN bN cN2 = uvwxy, |vwx| ≤ N and |vx| > 0.
Moreover, the P.L. claims that uviwxiy is in L, for all i≥0.
Now, you take over, analyzing the cases that are necessary to show L is not a CFL.

We:
Case 1: vwx over a’s or b’s or both, but no c’s.

i=1: uwz = aN-d bN-e cN2where at least one of d or e is greater than zero.
If just one of d or e is greater than zero then the number of a’s and b’s will not be equal and so
uwz is not in L. If d = e then both are greater than zero and, for uwz to be in L, we would require
that (N-d)2 = N2, which is not possible as d>0.

Case 2: vwx over c’s and perhaps b’s, but no a’s.
i=0: If there are any b’s then we will have fewer b’s than a’s and so uwz would be in L. Thus,
assume only c’s. We would then have fewer than N2 c’s and so again uwz is not in L.

These are all cases, and so, by PL, L is not a CFL

3 5. Prove that any class of languages, C, closed under union, concatenation, intersection with regular

languages, homomorphism and substitution (e.g., the Context-Free Languages) is closed under Left
Quotient with Regular Sets, where L Î C, R is Regular, L and R are over the alphabet S, and
L\R = { y | $x Î R, such that xy Î L }. (Note this differs from normal Quotient)
You may assume substitution f(a) = {a, a’}, and homomorphisms g(a) = a’ and h(a) = a, h(a’) = l.
Here aÎS and a’ is a new character associated with each aÎS.
You only need give me the definition of L/R in an expression that obeys CFL closure properties;
you do not need to prove or even justify your expression.

 L\R = h(f(L) Ç g(R) S*)

COT 4210 Discrete II – 3 – Fall 2016 Final Exam – Hughes

6 6. Consider the following instance of the Post Correspondence Problem (PCP) (Look at fact sheet for

definition). Out instance, P, is over the alphabet {a,b} and the two vectors X and Y are each of
length 3.

 X = (aba, bb, a); Y = (bab, b, baa)
 Using the construction shown in class, produce a context free grammar, G, that is ambiguous if and

only if the instance P of PCP has a solution. That is, create your context free grammar G based on
this instance P, such that some string w has two or more distinct parses iff P has a solution. As P has
a solution, G is ambiguous. One such solution is 2, 3, 1, 2. To illustrate this, show the associated
string that can be derived ambiguously in your grammar G.

S ® X | Y
X ® aba X {1] | bb X [2} | a X [3}
X ® aba [1] | bb [2] | a {3]
Y ® bab Y {1] | b Y [2} | baa Y [3}
Y ® bab [1] | b [2] | baa {3]

bbaababb

2 7. Fill in True/False (T/F) answers for each of the following statements:

Statement True/False
Any problem that is both RE and CO-RE is Recursive T
The UNIV (universal) function is a PRF* T
The pairing function <x,y> is 1-1 onto the natural numbers T
PRFs* are closed under unbounded minimization F

* PRF = primitive recursive function

COT 4210 Discrete II – 4 – Fall 2016 Final Exam – Hughes

10 8. Choosing from among (REC) recursive/decidable, (RE) re non-recursive, (coRE) co-re non-
recursive, (NRNC) non-re/non-co-re, categorize each of the sets in a) through d). Justify your
answer by showing some minimal quantification of some known recursive predicate.

a) A = { <f,x> | if jf(x) ever converges (it might not), it takes at least 10 steps to do so }.

 ~STP(f,x,9) REC

b.) B = { f | range(jf) is empty }

 "<x, t> [~STP(f,x,t)]) coRE

c.) C = { <f ,x> | jf(x)¯ but takes at least 10 steps to do so }

 $t [STP(f,x,t) & ~STP(f,x,9)] RE

d.) D = { f | jf diverges for some value of x }

 $x"t [~STP(f,x,t)] NRNC

2 9. Looking back at Question 8, which of these are candidates for using Rice’s Theorem to show their

unsolvability? Check all for which Rice Theorem might apply.

 a) b) X c) d) X

5 10. Using the definition that S is recursively enumerable iff S is the domain of some effective procedure
fS (partial recursive function), prove that if both S and its complement ~S are recursively enumerable
(using semi-decision effective procedures fS and f~S) then S is decidable. To get full credit, you must
show the characteristic function for S, cS, in all cases. Also, be sure to discuss why your cS works.

cS, (x) = STP(fS, x, µt [STP(fS, x, t) || STP(f~S, x, t)]) ________________________

Justification: Despite the fact that we have an unbounded search, we know it will be successful as
x is either in the domain of fS or f~S. The search returns the minimum time for convergence of one
of these functions and we then use that to see if x was in fS’s domain. If so, we return true, else
false.

COT 4210 Discrete II – 5 – Fall 2016 Final Exam – Hughes

 11. Define NAT = { f | range(f) = À }. That is, f ÎNAT iff f’s range includes every natural number.

4 a.) Use Rice’s Theorem to prove that NAT is undecidable.
First, NAT is non-trivial as I(x) = x is in NAT, but C0(x) = 0 is not.

Second, let f and g be two functions whose ranges are the same.

f Î NAT iff RANGE(f) = À iff RANGE(g) = À iff g Î NAT

4 b.) Show that TOT ≤m NAT, where TOT = { f | "x jf(x)¯ }.
Let f be an arbitrary function. Define Gf(x) = f(x) – f(x) + x

f Î TOTAL iff "x f(x)¯ iff "x Gf(x) = f(x) – f(x) + x = x iff "x Gf(x) = x iff Gf Î NAT

5 12. Match concepts in the left with related descriptions in the right column (see first answer). Note:

Every Concept must be aligned to a Description.

Concept Description Concept #
1 Problem A is in NP The classic NP-Complete problem 10
2 Problem A is in co-NP A is the problem TOTAL (set of Algorithms) 4
3 Problem A is in P A is decidable in deterministic polynomial time 3
4 Problem A is non-RE/non-Co-RE If B is in NP then B ≤P A 9
5 Problem A is NP-Complete A is in RE and, if B is in RE, then B ≤m A 8
6 Problem A is RE A is verifiable in deterministic polynomial time 1
7 Problem A is Co-RE A is in NP and if B is in NP then B ≤P A 5
8 Problem A is RE-Complete A is semi-decidable 6
9 Problem A is NP-Hard A is the complement of B and B is RE 7
10 Satisfiability A’s complement is in NP 2

COT 4210 Discrete II – 6 – Fall 2016 Final Exam – Hughes

6 13. We described the proof that 3SAT is polynomial reducible to Subset-Sum. You must repeat that.
Assuming a 3SAT expression (~a + b + ~c) (~a + ~b + c), fill in the right two columns of the
reduction from 3SAT to Subset-Sum.

 a b c ~a + b + ~c ~a + ~b + c
a 1 0 0 0 0

~a 1 0 0 1 1
b 0 1 0 1 0

~b 0 1 0 0 1
c 0 0 1 0 1

~c 0 0 1 1 0
C1 0 0 0 1 0
C1’ 0 0 0 1 0
C2 0 0 0 0 1
C2’ 0 0 0 0 1

 1 1 1 3 3

Write down a solution to above. That is, write down a subset of the rows in the main body of the
matrix that sums to 11133. Please write down leading and trailing zeroes, i.e., 5 digit numbers for
each value, along with the label of the chosen row.

10011(~a) + 010010(b) + 00101(c) + 00010C1) + 00001(C2) = 11133

6 14. Consider the following set of independent tasks with associated task times:
(T1,4), (T2,5), (T3,2), (T4,7), (T5,1), (T6,4), (T7,8)
Fill in the schedules for these tasks under the associated strategies below.
Greedy using the list order above:

T1 T1 T1 T1 T3 T3 T5 T6 T6 T6 T6 T7 T7 T7 T7 T7 T7 T7 T7

T2 T2 T2 T2 T2 T4 T4 T4 T4 T4 T4 T4

Greedy using a reordering of the list so that longest running tasks appear earliest in the list:

T7 T7 T7 T7 T7 T7 T7 T7 T1 T1 T1 T1 T6 T6 T6 T6

T4 T4 T4 T4 T4 T4 T4 T2 T2 T2 T2 T2 T3 T3 T5

COT 4210 Discrete II – 7 – Fall 2016 Final Exam – Hughes

6 15. Consider the decision problem to determine if there is an Independent Set of vertices of size k>0 in
some undirected graph G = (V, E). Here we always assume that k £ |V| and |V| > 0, for if not the
answer is a resounding NO. An independent set, V’, is any subset of V, such that if t and u are in V’
then (t, u) is not an edge in E.

 Using 3-SAT as a known NP-Complete Problem, show Independent Set is NP-Hard. Just showing
the construct with its gadgets for the 3-SAT expression
(a + ~b + c) (~a + b + ~c) (a + b + c) (~a + b + b)
and indicating the value of k, along with a choice of k independent vertices, is sufficient.

k=4

Finish by Hand

 Complete the proof that Independent Set is NP-Complete by effectively arguing that Independent
Set is in NP.

To show this, we just need to show we can verify (or deny) a proposed solution in deterministic
polynomial time. A solution is a proposed Independent Set. Given such a set, we can check first
that it includes exactly k nodes, where k is the given IS size. If it passes that first test, we then
make sure each such node has no neighbors that are also in the chosen set. This takes at most
 k* |E| steps, as we never need to look at any edge more than once since, if it were to be seen more
than once, we would have already found the set to be “dependent.”

a ~b

c ~a

b

~c

a

b

c

~a

b

b

