Assignment \# 9.1a Key

1. Use quantification of an algorithmic predicate to estimate the complexity (decidable, re, co-re, non-re) of each of the following, (a)-(d):
a) $\{\mathrm{f} \| \mathrm{f}$ is a Fibonacci function, i.e. $\mathrm{f}(0)=\mathrm{f}(1)=1$ and $\mathrm{f}(\mathrm{x}+2)=\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{x}+1)\}$
$\forall \mathrm{x} \exists \mathrm{t}[\operatorname{STP}(\mathrm{f}, \mathrm{x}, \mathrm{t}) \& \operatorname{STP}(\mathrm{f}, \mathrm{x}+1, \mathrm{t}) \& \operatorname{STP}(\mathrm{f}, \mathrm{x}+2, \mathrm{t}) \&$
$(\mathrm{x}=0 \Rightarrow \operatorname{VALUE}(\mathrm{f}, \mathrm{x}, \mathrm{t})=0 \quad \& \mathrm{x}=1 \Rightarrow \operatorname{VALUE}(\mathrm{f}, \mathrm{x}, \mathrm{t})=1 \&$
$x>1 \Rightarrow(\operatorname{VALUE}(f, x+2, t)=\operatorname{VALUE}(f, x, t)+\operatorname{Value}(x+2, t))]$
Non-re, Non co-re

Assignment \# 9.1b Key

b) \quad f $|\mid$ range(f) $|>1\}$
$\exists<x, y, t>[\operatorname{STP}(f, x, t) \& \operatorname{STP}(f, y, t) \&(\operatorname{VALUE}(f, x, t) \neq(\operatorname{VALUE}(f, y, t))]$ RE

Assignment \# 9.1c Key

c) $\{<f, x\rangle$ if $f(x)$ converges, it does so in more than ($\left.2^{x}\right)$ units of time $\}$
~STP(f, $\left.x, 2^{x}\right)$
REC / DEC

Assignment \# 9.1d Key

d) $\{f \mid f(x)=f(x+1)$ for at least one value of x \}
$\exists<x, t>[\operatorname{STP}(f, x, t) \& \operatorname{STP}(f, x+1, t) \&(\operatorname{VALUE}(f, x, t)=\operatorname{VALUE}(f, x+1, t))]$ RE

Assignment \# 9.2a,b Key

1. Let sets A be recursive (decidable) and B be re non-recursive (undecidable).
Consider C = B-A . For (a)-(c), either show sets A and B with the specified property or demonstrate that this property cannot hold.
a) Can C be recursive?

YES. Consider $A=\boldsymbol{N} . \mathrm{B}=$ Halt. $\mathrm{C}=\{ \}$
b) Can C be re, non-recursive?

YES. Consider A = \{\}. B = Halt. C = HALT

Assignment \# 9.2c Key

c) Can C be non-re?

No. Can semi-decide C as follows.
First $B-A=B \cap^{\sim} A$ and $\sim A$ is itself decidable and so re.
Thus, just need to show that the intersection of two re sets is also re
Let $B=\operatorname{dom}\left(g_{B}\right)$ and $\sim A$ be $\operatorname{dom}\left(g_{\sim_{A}}\right)$
Define g_{c} by $g_{c}(x)=\exists t\left(S T P\left(g_{B}, x, t\right) \& \operatorname{STP}\left(g_{\sim_{A}}, x, t\right)\right)$.
Clearly the domain of g_{C} is the intersection of the domains of g_{B} and $\mathrm{g}_{\sim_{A}}$ and so C = B-A is RE.

