Assignment \# 8.1 Sample Key

1. Use reduction from HALT to show that one cannot decide HasExp, where HasExp $=\left\{\mathrm{f} \mid\right.$ for some $\left.\mathrm{x}, \mathrm{y}, \mathrm{x}<\mathrm{y}, \varphi_{\mathrm{f}}(\mathrm{y})=\mathbf{2}^{\wedge} \varphi_{\mathrm{f}}(\mathrm{x})\right\}$
Let f, x be an arbitrary pair of natural numbers. $\left\langle f, x>\in\right.$ Halt iff $\varphi_{f}(x) \downarrow$
Define g as index of φ_{g} where $\forall \mathrm{y} \varphi_{\mathrm{g}}(\mathrm{y})=\varphi_{\mathrm{f}}(\mathrm{x})-\varphi_{\mathrm{f}}(\mathrm{x})+\mathrm{y}$
Clearly, $\forall \mathbf{y} \varphi_{\mathrm{g}}(\mathrm{y})=\mathrm{y}$ iff $\varphi_{\mathrm{f}}(\mathrm{x}) \downarrow$; otherwise $\forall \mathbf{y} \varphi_{\mathrm{g}}(\mathrm{y})^{\uparrow}$
But then, $\varphi_{f}(\mathrm{x}) \downarrow$ iff $\forall \mathrm{y} \varphi_{\rho}(\mathrm{y})=\mathrm{y}$ and $\varphi_{\mathrm{g}}\left(2^{\mathrm{y}}\right)=2^{\mathrm{y}}$
implies $\varphi_{\mathrm{g}}(0)=0$ and $\varphi_{\mathrm{g}}(1)=2^{\mathbf{6}}=1$ and so for some $x, y, x<y, \varphi_{f}(y)=2^{\wedge} \varphi_{f}(x)$
Summarizing, $\langle f, x\rangle \in$ Halt iff $g \in$ HasExp and so
Halt \leq_{m} HasExp as we were to show.
Note: I have not overloaded the index of a function with the function in my proof, but I do not mind if you do such overloading.

Assignment \# 8.2 Sample Key

2. Show that HasExp reduces to Halt. (1 plus $\mathbf{2}$ show they are equally hard)
Let f be an arbitrary natural number. $f \in$ HasExp iff for some x and y, $\mathbf{x}<\mathbf{y}, \varphi_{f}(x) \downarrow, \varphi_{f}(y) \downarrow$ and $\varphi_{f}(y)=2 \wedge \varphi_{f}(x)$
Define g as index of φ_{g} where $\forall \mathrm{z} \varphi_{g}(\mathrm{z})=$
$\exists<x, y, t>\left[\operatorname{STP}(f, x, t) \& \operatorname{STP}(f, y, t) \&(x<y) \&\left(\operatorname{VALUE}(f, x, t)=\mathbf{2}^{\wedge} \operatorname{VALUE}(f, y, t)\right)\right]$
Clearly, $\forall \mathrm{z} \varphi_{g}(\mathrm{z})=1$, iff there is some pair, x, y, such that $\mathrm{x}<\mathrm{y}$ and $\varphi_{\mathrm{f}}(\mathrm{y})=$ $\mathbf{2}^{\wedge} \varphi_{f}(x)$; and $\nabla^{z} \varphi_{g}(z) \uparrow$, otherwise
Summarizing, $f \in$ HasExp iff $\langle g, 0\rangle \in$ Halt and so
HasExp \leq_{m} Halt as we were to show.

Assignment \# 8.3 Sample Key

3. Use Reduction from TOTAL to show that IsExp is not even re, where IsExp $=\left\{f \mid\right.$ for all x, there is some $\left.y, x<y, \varphi_{f}(y)>2^{\wedge} \varphi_{f}(x)\right\}$ Note: If you use $\varphi_{f}(y)=\mathbf{2 n}^{\wedge} \varphi_{f}(x)$, that's okay

Let f be an index of some arbitrary function.
Define g as index of φ_{g} where $\forall x \varphi_{g}(x)=\varphi_{f}(x)-\varphi_{f}(x)+x$
Clearly, $\forall \mathbf{x} \varphi_{\mathrm{g}}(\mathrm{x})=\mathrm{x}$, iff $\forall \mathrm{x} \varphi_{\mathrm{f}}(\mathrm{x}) \downarrow$, and $\forall \mathrm{x} \varphi_{\mathrm{g}}(\mathrm{x}) \uparrow$, otherwise.
But then, $\forall x \varphi_{f}(x) \downarrow$ iff $\forall x \varphi_{g}(x)=x$ and $\varphi_{g}\left(2^{x}+1\right)=2^{x}+1$ (Here, y is $2^{\mathrm{x}}+1$)
Summarizing, $f \in$ TOTAL iff $g \in \operatorname{IsExp}$ and so
TOTAL \leq_{m} IsExp as we were to show.

Assignment \# 8.4 Sample Key

4. Show IsExp reduces to TOTAL. (3 plus 4 show they are equally hard)

Let f be an arbitrary natural number. f is in ISExp iff
$\forall \mathbf{x} \exists \mathrm{y}, \mathrm{x}<\mathrm{y}, \varphi_{\mathrm{f}}(\mathrm{y})>\mathbf{2}^{\wedge} \varphi_{\mathrm{f}}(\mathrm{x})$.
Note: To be in IsExp, f must be in TOTAL since the property is true of all x.
Define g as index of φ_{g} where $\varphi_{\mathrm{g}}(\mathrm{x})=\exists \mathrm{y}\left[\mathrm{x}<\mathrm{y} \& \varphi_{\mathrm{f}}(\mathrm{y})>\mathbf{2 n}^{\wedge} \varphi_{\mathrm{f}}(\mathrm{x})\right]$
Clearly, $\forall \mathbf{x} \varphi_{g}(x) \downarrow$ iff
$\forall \mathrm{x} \exists \mathrm{y}\left[\mathrm{y}>\mathrm{x} \& \varphi_{\mathrm{f}}(\mathrm{x}) \downarrow \& \varphi_{\mathrm{f}}(\mathrm{y}) \downarrow \& \varphi_{\mathrm{f}}(\mathrm{y})>\mathbf{2}^{\wedge} \varphi_{\mathrm{f}}(\mathrm{x})\right] ;$
otherwise $\exists \mathrm{x} \varphi_{\mathrm{g}}(\mathrm{x}) \uparrow$.
Summarizing, $f \in \operatorname{IsExp}$ iff $g \in$ TOTAL and so
IsExp \leq_{m} TOTAL as we were to show.

Assignment \# 8.5 Sample Key

5. Use Rice's Theorem to show that HasExp is undecidable

First, IsExp is non-trivial as $1(x)=x$ is in HasExp (for any x there is a $y=2^{x}>x$, such that $\left.I(y)=2^{x}\right)$ and $C O(x)=0$ is not.
Second, HasExp is an I/O property.
To see this, let f and g are two arbitrary indices such that
$\forall \mathbf{x}\left[\varphi_{f}(\mathbf{x})=\varphi_{\mathrm{g}}(\mathrm{x})\right]$
$\mathrm{f} \in$ HasExp iff $\exists \mathrm{y}, \mathrm{z}\left[\mathrm{y}<\mathrm{z} \& \varphi_{\mathrm{f}}(\mathrm{y}) \downarrow \& \varphi_{\mathrm{f}}(\mathrm{z}) \downarrow \& \varphi_{\mathrm{f}}(\mathrm{z})=\mathbf{2}^{\wedge} \varphi_{\mathrm{f}}(\mathrm{y})\right.$ iff, since $\forall x\left[\varphi_{f}(x)=\varphi_{\rho}(x)\right], \exists y, z[y z$, (same y, z as above) \& $\varphi_{g}(\mathrm{y}) \downarrow \& \varphi_{\mathrm{g}}(\mathrm{z}) \downarrow \& \varphi_{\mathrm{g}}(\mathrm{z})=\mathbf{2}^{\wedge} \varphi_{\mathrm{g}}(\mathrm{y})$ iff $\mathrm{g} \in \operatorname{HasExp}$
Thus, $\mathrm{f} \in$ HasExp iff $\mathrm{g} \in$ HasExp.

Assignment \# 8.6 Sample Key

6. Use Rice's Theorem to show that IsExp is undecidable

First, IsExp is non-trivial as $I(x)=x$ is in IsExp (for every x, there is a $y=2^{x}+1$, such that $\left.I(y)>I(x)\right)$ and $C O(x)=0$ is not.
Second, IsExp is an I/O property.
To see this, let f and g are two arbitrary indices such that
$\forall \mathbf{x}\left[\varphi_{\mathrm{f}}(\mathbf{x})=\varphi_{\mathrm{g}}(\mathbf{x})\right]$.
$\mathrm{f} \in \operatorname{IsExp}$ iff $\forall \mathbf{x} \exists \mathrm{y}\left[\mathrm{x}<\mathrm{y}, \varphi_{\mathrm{f}}(\mathrm{x}) \downarrow, \varphi_{\mathrm{f}}(\mathrm{y}) \downarrow\right.$ and $\varphi_{\mathrm{f}}(\mathrm{y})>\mathbf{2}^{\wedge} \varphi_{\mathrm{f}}(\mathrm{x})$
iff, since $\forall x\left[\varphi_{\mathrm{f}}(\mathbf{x})=\varphi_{\mathrm{g}}(\mathrm{x})\right], \forall \mathrm{x} \exists \mathrm{y}\left[\varphi_{\mathrm{g}}(\mathrm{x}) \downarrow, \varphi_{\mathrm{g}}(\mathrm{y}) \downarrow \& \& \varphi_{\mathrm{g}}(\mathrm{y})>\mathbf{2}^{\wedge} \varphi_{\mathrm{g}}(\mathrm{x})\right.$
iff $g \in \operatorname{IsExp}$.
Thus, $\mathrm{f} \in$ IsExp iff $\mathrm{g} \in$ IsExp.

