Assignment # 7.1a Key

1. Write a CFG to show the language is a CFL or use the Pumping Lemma for CFLs to prove that it is not for each of the following.
 a) \(L = \{ a^i b^j | j = i^2, i, j > 0 \} \)
 Assume this language is a CFL
 PL: Provides \(N>0 \)
 Me: \(a^N b^{N^2} \)
 PL: \(a^N b^{N^2} = uvwxy, |vwx| \leq N, |vx|>0, \) and \(\forall i uv^iwx^iy \in L \)
 ME: \(i=2 \).
 Case 1) \(vwx \) contains some a’s. Then \(uv^2wx^2y \) has at least \(N+1 \) a’s and at most \(N^2 + N - 1 \) b’s. But \((N+1)^2 \) is \(N^2 + 2N + 1 \) and \(N^2 + 2N + 1 > N^2 + N - 1 \) since \(2N+1 > N-1 \) for \(N>0 \) (even for \(N = 0 \)), Thus, \(uv^2wx^2y \notin L \)
 Case 2) \(vwx \) contains only b’s. Then \(uv^2wx^2y \) has exactly \(N \) a’s and at least \(N^2 + 1 \) b’s. But then it has too many b’s. Thus, \(uv^2wx^2y \notin L \)
 These cases cover all possibilities, so \(L \) is not a CFL.
Assignment # 7.1b Key

1. Write a CFG to show the language is a CFL or use the Pumping Lemma for CFLs to prove that it is not for each of the following.

 b) \(L = \{ a^i b^j c^k d^m \mid m + k = i + j \} \)

 The language is a CFL as can be seen by \(G = (\{S, \}, \{a,b,c,d\}, R, S) \)

 \[
 \begin{align*}
 S & \rightarrow a \ S \ d \mid T \mid U \\
 T & \rightarrow a \ T \ c \mid V \\
 U & \rightarrow b \ U \ d \mid V \\
 V & \rightarrow b \ V \ c \mid \lambda
 \end{align*}
 \]
2. Consider the context-free grammar $G = \{ \{S\}, \{a,b\}, R, S \}$

- R
 - $S \rightarrow a \mid b \mid a a \mid b b \mid a S a \mid b S b$

Provide a proof that shows

$$ L = \{ w \mid w \in \{a,b\}^* \text{ and } w \text{ is a palindrome} \} $$

You will need to provide an inductive proof in both directions. Actually, though, the best approach is to prove a Lemma first that is used in the proofs going in each direction of containment.

Lemma 1: $S \Rightarrow^* \beta$, where β contains a nonterminal, iff β is of the form xSx_R, where $x \in \{a,b\}^*$. We provide this inductively on the length of the derivation, i.e., we show, for all $k \geq 0$ that $S \Rightarrow^k xSx_R$ for all strings $x \in \{a,b\}^*$, $|x|=k$, and that these are the only non-terminal strings that can be derived in G by derivations of length k.

Base ($k=0$): $S \Rightarrow^0 S$ is the only length zero derivation. The form of this is xSx for $|x| = 0$, and that is the only string that can be derived in zero steps, so our base case is shown.

IH(k): $S \Rightarrow^k \beta$, $k \geq 0$, where β contains a nonterminal, iff β is of the form xSx_R, where $x \in \{a,b\}^*$ and $|x|=k$.

IS($k+1$): Each derivation of length $k+1$ containing a non-terminal string in $L(G)$ must start with application of one of the following two rules $S \rightarrow a S a \mid b S b$. This means that any derivation of length $k+1$ starts $S \Rightarrow aS \rightarrow^{k} aSxR_{a}$ or $S \Rightarrow bS \rightarrow^{k} bSxR_{b}$ and these are the only possibilities. But then, $S \Rightarrow^{k+1} \beta$, $k \geq 0$, where β contains a nonterminal, iff β is of the form xSx_R, where $x \in \{a,b\}^*$ and $|x|=k+1$.

This proves our Lemma.
2. Consider the context-free grammar $G = \{ \{S\}, \{a,b\}, R, S \}$

$R:\$

$S \rightarrow a \mid b \mid a\ a \mid b\ b \mid a\ S\ a \mid b\ S\ b$

Provide a proof that shows

$L = \{ w \mid w \in \{a,b\}^+ \text{ and } w \text{ is a palindrome} \}$

We wish to prove that $L(G) = L$. Specifically, we show $S \Rightarrow^* \beta$ where β is over terminals, iff β is of the form xx^R, where $x \in \{a,b\}^*$. By Lemma 1, $S \Rightarrow^* \beta$, where β contains a nonterminal, iff β is of the form xSx^R, where $x \in \{a,b\}^*$. R has four roles that can replace the one non-terminal S with terminals only; these are $S \rightarrow a \mid b \mid a\ a \mid b\ b$. All strings in L are of one of the forms xax^R, xbx^R, $xaax^R$ or $xbbx^R$, where $x \in \{a,b\}^*$. Using the Lemma and our observation about the only terminating rules in R, we have that $S \Rightarrow^* \beta$ where β is over terminals, iff β is of one of the forms xax^R, xbx^R, $xaax^R$ or $xbbx^R$, where $x \in \{a,b\}^*$. But this shows that the words in L are exactly those that can be generated in $L(G)$. Thus, we have shown that $L(G) = L$ as was desired.