Assignment \# 7.1a Key

1. Write a CFG to show the language is a CFL or use the Pumping Lemma for CFLs to prove that it is not for each of the following.
a) $L=\left\{a^{i} b^{j} \mid j=i^{2}, i, j>0\right\}$

Assume this language is a CFL
PL: Provides $\mathrm{N}>0$
Me: $a^{N} b^{N^{2}}$
PL: $a^{N} b^{N^{2}}=u v w x y,|v w x| \leq N,|v x|>0$, and $\forall i u v^{i} w x^{i} y \in L$
ME: $\mathrm{i}=2$.
Case 1) vwx contains some a's. Then $u v^{2} w x^{2} y$ has at least $N+1$ a's and at most $\mathrm{N}^{2}+\mathrm{N}-1$ b's. But $(\mathrm{N}+1)^{2}$ is $\mathrm{N}^{2}+2 \mathrm{~N}+1$ and $\mathrm{N}^{2}+2 \mathrm{~N}+1>\mathrm{N}^{2}+\mathrm{N}-1$ since
$2 \mathrm{~N}+1>\mathrm{N}-1$ for $\mathrm{N}>0$ (even for $\mathrm{N}=0$), Thus, $\mathrm{uv}^{2} w x^{2} \mathrm{y} \notin \mathrm{L}$
Case 2) vwx contains only b's. Then $u^{2}{ }^{2} w^{2} y$ has exactly N a's and at least $N^{2}+1$ b's. But then it has too many b's. Thus, uv²wx² $\ddagger \in L$ These cases cover all possibilities, so L is not a CFL.

Assignment \# 7.1b Key

1. Write a CFG to show the language is a CFL or use the Pumping Lemma for CFLs to prove that it is not for each of the following.
b) $L=\left\{a^{i} b^{j} c^{k} d^{m} \mid m+k=i+j\right\}$

The language is a CFL as can be seen by $G=(\{S\},,\{a, b, c, d\}, R$, S)
$S \rightarrow$ a S d | T | U
$\mathrm{T} \rightarrow \mathrm{a} \mathbf{T} \mathbf{c} \mid \mathrm{V}$
$\mathbf{U} \rightarrow \mathbf{b} \mathbf{U} \mathbf{d} \mid \mathbf{V}$
$\mathbf{V} \rightarrow \mathbf{b} \mathbf{V} \boldsymbol{c} \mid \boldsymbol{\lambda}$

Assignment \# 7.2.1 Key

2. Consider the context-free grammar $\mathbf{G}=\{\{\mathbf{S}\},\{\mathbf{a}, \mathbf{b}\}, \mathbf{R}, \mathbf{S}\}$

R:
$S \rightarrow \mathbf{a | b | a | b b | a S a | b S b}$
Provide a proof that shows

$L=\left\{w \mid w \in\{a, b\}^{+}\right.$and w is a palindrome $\}$

You will need to provide an inductive proof in both directions. Actually, though, the best approach is to prove a Lemma first that is used in the proofs going in each direction of containment.
Lemma 1: $\mathbf{S} \Rightarrow^{*} \beta$, where β contains a nonterminal, iff β is of the form $\mathbf{x S} \mathbf{x}^{\boldsymbol{R}}$, where $\mathbf{x} \in\{\mathbf{a}, \mathbf{b}\}^{*}$. We provide this inductively on the length of the derivation, i.e., we show, for all $\mathbf{k} \geq \mathbf{0}$ that $\mathbf{S} \Rightarrow^{\mathbf{k}} \mathbf{x S} \mathbf{x}^{\mathbf{R}}$ for all strings $\mathbf{x} \in\{\mathbf{a}, \mathbf{b}\}^{*},|\mathbf{x}|=\mathbf{k}$, and that these are the only non-terminal strings that can be derived in \mathbf{G} by derivations of length \mathbf{k}.
Base ($\mathbf{k}=\mathbf{0}$): $\mathbf{S} \Rightarrow^{0} \mathbf{S}$ is the only length zero derivation. The form of this is $\mathbf{x S x}$ for $|\mathbf{x}|=\mathbf{0}$, and that is the only string that can be derived in zero steps, so our base case is shown.
$\mathbf{I H}(\mathbf{k}): \mathbf{S} \Rightarrow^{k} \beta, k \geq \mathbf{0}$, where β contains a nonterminal, iff β is of the form $\mathbf{x S} \mathbf{x}^{\mathbf{R}}$, where $\mathbf{x} \in\{a, b\}^{*}$ and $|x|=k$.
$\mathbf{I S}(\mathbf{k}+1)$: Each derivation of length $\mathbf{k + 1}$ containing a non-terminal string in $\mathbf{L}(\mathbf{G})$ must start with application of one the following two rules $\mathbf{S} \rightarrow \mathbf{a} \mathbf{S} \mathbf{a} \mid \mathbf{b} \mathbf{S} \mathbf{b}$. This means that any derivation of length $\mathrm{k}+1$ starts $\mathbf{S} \Rightarrow \mathbf{a S a}$ or $\mathbf{S} \Rightarrow \mathbf{b S b}$ followed by a derivation from \mathbf{S} of length \mathbf{k}. By IH, we have either $\mathbf{S} \Rightarrow \mathbf{a S a} \Rightarrow^{k} \mathbf{a x S} \mathbf{x}^{\mathbf{R}} \mathbf{a}$ or $\mathbf{S} \Rightarrow \mathbf{b S b} \Rightarrow^{k} \mathbf{b x S} \mathbf{x}^{\mathrm{R}} \mathbf{b}$ and these are the only possibilities. But then, $\mathbf{S} \Rightarrow^{k+1} \beta, \mathbf{k} \geq \mathbf{0}$, where β contains a nonterminal, iff β is of the form $\mathbf{x S} x^{\mathbf{R}}$, where $\mathbf{x} \in\{a, b\}^{*}$ and $|\mathbf{x}|=k+1$.
This proves our Lemma.

Assignment \# 7.2.2 Key

2. Consider the context-free grammar $\mathbf{G}=\{\{\mathbf{S}\},\{\mathbf{a}, \mathbf{b}\}, \mathbf{R}, \mathbf{S}\}$

R:
$\mathbf{S} \rightarrow \mathbf{a | b | a | b b | a S a | b S b}$
Provide a proof that shows
$L=\left\{w \mid w \in\{a, b\}^{+}\right.$and w is a palindrome $\}$
We wish to prove that $L(G)=L$. Specifically, we show $\mathbf{S} \Rightarrow^{*} \beta$ where β is over terminals, iff β is of the form $\mathbf{x x}^{\mathbf{R}}$, where $\mathbf{x} \in\{\mathbf{a}, \mathbf{b}\}^{+}$. By Lemma $1, \mathbf{S} \Rightarrow^{*} \beta$, where β contains a nonterminal, iff β is of the form $\mathbf{x S} \mathbf{x}^{\mathbf{R}}$, where $\mathbf{x} \in\{\mathbf{a}, \mathbf{b}\}^{*}$. \mathbf{R} has four roles that can replace the one non-terminal \mathbf{S} with terminals only; these are $\mathbf{S} \rightarrow \mathbf{a}|\mathbf{b}| \mathbf{a} \mathbf{a} \mid \mathbf{b} \mathbf{b}$. All strings in L are of one of the forms $\mathbf{x a x}^{\mathrm{R}}, \mathbf{x b x}^{\mathbf{R}}, \mathbf{x a a x}{ }^{\mathrm{R}}$ or $\mathbf{x b b} \mathbf{x}^{\mathbf{R}}$, where $\mathbf{x} \in\{\mathbf{a}, \mathbf{b}\}^{*}$. Using the Lemma and our observation about the only terminating rules in \mathbf{R}, we have that $\mathbf{S} \Rightarrow^{*} \boldsymbol{\beta}$ where β is over terminals, iff β is of one of the forms $\mathbf{x a x}^{R}, \mathbf{x b x}^{\mathrm{R}}, \mathbf{x a a x}^{\mathrm{R}}$ or $\mathbf{x b b x}^{\mathrm{R}}$, where $\mathbf{x} \in\{\mathbf{a}, \mathbf{b}\}^{*}$. But this shows that the words in L are exactly those that can be generated in $\mathbf{L}(\mathbf{G})$. Thus, we have shown that $\mathbf{L}(\mathbf{G})=\mathbf{L}$ as was desired.

