Assignment \# 5.1 (M-N)

a. $L=\left\{x \# y \mid x, y \in\{0,1\}^{+}\right.$and y is the twos complement of $\left.x\right\}$

Let R_{L} be the right invariant equivalence class defined by $\mathrm{M}-\mathrm{N}$ for L . Consider the pair of equivalent classes [010'\#] and [010 $\#$], $i \neq j, i, j>0$. $010^{i} \# 110^{i} \in L$ but $010^{j} \# 110^{i} \notin L$. Thus, for each distinct pair, $i, j, i \neq j$, [010 $\left.{ }^{\circ}\right] \neq\left[010^{j}\right]$ and hence R_{L} has infinite index.
L is not Regular by Myhill-Nerode Theorem.

Assignment \# 5.1 (PL)

a. $L=\left\{x \# y \mid x, y \in\{0,1\}^{+}\right.$and y is the twos complement of $\left.x\right\}$

PL: Gives me $\mathrm{N}>0$ associated with L
Me: Choose $w=10^{\mathrm{N}} \# 10^{\mathrm{N}}$ which is in L
PL: States $w=x y z,|x y| \leq N,|y|>0, x^{i} z \in L$ for all $i \geq 0$
Me: Choose $\mathrm{i}=0$.
Case 1: If the initial 1 is erased, we have $0^{\mathrm{N}-|y|-1} \# 10^{\mathrm{N}}$ which is not in L . Case 2: If only 0^{\prime} s are affected, we have $10^{\mathrm{N}-\mathrm{y} \mid \mathrm{y}} 10^{\mathrm{N}}$, which is not in L when $|y|>0$ (would need to end with \#10 ${ }^{\mathrm{N}-|y|}$).

Thus, L is not Regular by Pumping Lemma for Regular Languages.

Assignment \# 5.1b (M-N)

b. $L=\left\{a^{i b j} c^{k} \mid i>k\right.$ or $j>k$ or $\left.k>i\right\}$

Let R_{L} be the right invariant equivalence relation defined for L by $\mathrm{M}-\mathrm{H}$. Consider [aibi] and [ajbj] i $\neq \mathbf{j}$. $a^{i} b^{i} c^{i} \notin L$ but $a^{j} b^{j} c^{i} \in L$

Thus, for any two distinct $\mathrm{i}, \mathrm{j}, \mathrm{i} \neq \mathrm{j},\left[\mathrm{a}^{i} \mathrm{~b}^{\mathrm{i}}\right] \neq\left[\mathrm{a}^{\mathrm{j}} \mathrm{b}^{\mathrm{j}}\right]$
This is a bit different than all our other cases in that we focus on a pattern that leads to a string not in L versus one in L - that's a bit of a flip.

Assignment \# 5.1b (PL)

b. $L=\left\{a^{i} b^{j} c^{k} \mid i>k\right.$ or $j>k$ or $\left.k>i\right\}$. I found it easy to do the complement of L. As regular are closed under complement, if the complement of L is not Regular, then neither is L. $L^{c}=\left\{a^{i} b^{i} c^{i} \mid i \geq 0\right\} \cup b^{+}(a+c)^{+}+c^{+}(a+b)^{+}$. Note that the latter two parts are regular and do not overlap the first part.

Me: L^{C} is regular
PL: Gives me $\mathbf{N}>0$ associated with L^{C}
Me: Choose $w=a^{N} b^{N} c^{N}$ which is in L^{C}
PL: States w=xyz, $|x y| \leq N,|y|>0, x^{i} z \in L^{C}$ for all $i \geq 0$
Me: Choose $i=0$. This says that $x z=a^{N-|y|} b^{N} c^{N} \in L$. But, since $|y|>0$ and there are no order problems (b's before a's or c's, or c's before a's or b's), this string is not in LC.

Thus, L^{C} is not Regular by Pumping Lemma for Regular Languages and, by closure of Regular under complement, L is not Regular.

Assignment \# 5.1c (M-N)

c. $L=\left\{x w x \mid x, w \in\{a, b\}^{+}\right.$and $\left.|x|=|w|\right\}$

I attack this with M-N. Let R_{L} be the right invariant equivalence relation defined for L by M-H.
Consider [aiba $\left.{ }^{\mathrm{i}+1}\right]$ and $\left[\mathrm{a}^{\mathrm{i}} \mathrm{ba}^{\mathrm{j}+1}\right] \mathrm{i}<\mathrm{j}$. $a^{i} b^{i+1} a^{i} b \in L$ but $a^{j i b} a^{j+1} a^{i} b \notin L$, when $j<I$, as last part ending b means that first part must also end in b and so each part ending in b must be preceded by i a's. The problem then is that the middle part (the w part) would have length $\mathrm{j}+1$ which is longer than the start and end parts (the x parts) which are of length $\mathrm{i}+1$.. Thus, for any two distinct $\mathrm{i}, \mathrm{j}, \mathrm{i} \neq \mathrm{j},\left[\mathrm{a}^{i} b \mathrm{~b}^{\mathrm{i}+1}\right] \neq\left[\mathrm{a}^{\mathrm{j}} \mathrm{ba} \mathrm{a}^{\mathrm{j}+1}\right]$. Note that, if $\mathrm{l}<\mathrm{j}$, we have from above; if $i>j$, then reverse roles of I and j and get result from above.

L is not Regular by Myhill-Nerode Theorem.

Assignment \# 5.1c (PL)

c. $L=\left\{x w x \mid x, w \in\{a, b\}^{+}\right.$and $\left.|x|=|w|\right\}$

PL: Gives me $\mathrm{N}>0$ associated with L
Me: Choose $v=a^{N} b a^{N} b a^{N} b$ which is in L
PL: States v=xyz, $|x y| \leq N,|y|>0, y^{i} z \in L$ for all $i \geq 0$
Me: Choose $i=0 . a^{N-|y| b a N b a N b} \notin L$ since third b must have same number of a's preceding it as first b, so middle part is $a^{\mathrm{N} b a l y l}$, which is longer that the starting part.

Thus, L is not Regular by Pumping Lemma for Regular Languages.

Assignment \# 5.2

2. Write a regular (right linear) grammar that generates $\mathbf{L}=\left\{\mathbf{w} \mid \mathbf{w} \in\{\mathbf{0}, \mathbf{1}\}^{+}\right.$and \mathbf{w} interpreted as a binary number has a remainder of 3 or 4 when divided by 6$\}$.
```
<0> -> 0<0> | 1 <1>
<1> -> 0<2> | 1 <3>
<2> -> 0<4> | 1 < 5>
<3> -> 0<0> | 1<1> | \lambda
<4> 
<5> -> 0<4> | 1 < 5>
```


Assignment \# 5.3

2. Present a Mealy Model finite state machine that reads an input $\mathbf{x} \in\{\mathbf{0}, \mathbf{1}\}^{+}$and produces the binary number that represents the result of adding binary $\mathbf{1 0 1}$ to \mathbf{x} (assumes all numbers are positive, including results). Assume that \mathbf{x} is read starting with its least significant digit.

0/0, 1/1

