Assignment # 5.1 (M-N)

a. \(L = \{ x#y \mid x, y \in \{0,1\}^+ \text{ and } y \text{ is the twos complement of } x \} \)

Let \(R_L \) be the right invariant equivalence class defined by M-N for \(L \). Consider the pair of equivalent classes \([010^i#] \) and \([010^j#]\), \(i \neq j \), \(i, j > 0 \). \(010^i#110^i \in L \) but \(010^j#110^i \notin L \). Thus, for each distinct pair, \(i, j \), \(i \neq j \), \([010^i] \neq [010^j] \) and hence \(R_L \) has infinite index.

\(L \) is not Regular by Myhill-Nerode Theorem.
Assignment # 5.1 (PL)

a. \(L = \{ x\#y \mid x, y \in \{0,1\}^* \text{ and } y \text{ is the twos complement of } x \} \)

PL: Gives me \(N > 0 \) associated with \(L \)
Me: Choose \(w = 10^N\#110^N \) which is in \(L \)
PL: States \(w = xyz, |xy| \leq N, |y| > 0, xy^i z \in L \) for all \(i \geq 0 \)
Me: Choose \(i = 0 \).
Case 1: If the initial 1 is erased, we have \(0^{N-|y|-1}\#110^N \) which is not in \(L \).
Case 2: If only 0’s are affected, we have \(10^{N-|y|}\#110^N \), which is not in \(L \) when \(|y| > 0 \) (would need to end with \#110^{N-|y|} \).

Thus, \(L \) is not Regular by Pumping Lemma for Regular Languages.
Assignment # 5.1b (M-N)

b. $L = \{ a^i b^j c^k \mid i > k \text{ or } j > k \text{ or } k > i \}$

Let R_L be the right invariant equivalence relation defined for L by M-H. Consider $[a^i b^i]$ and $[a^j b^j]$ for $i \neq j$. $a^i b^j c^i \notin L$ but $a^j b^i c^j \in L$

Thus, for any two distinct i, j, $i \neq j$, $[a^i b^i] \neq [a^j b^j]$

This is a bit different than all our other cases in that we focus on a pattern that leads to a string not in L versus one in L – that’s a bit of a flip.
b. \(L = \{ a^i b^j c^k \mid i > k \text{ or } j > k \text{ or } k > i \} \). I found it easy to do the complement of \(L \). As regular are closed under complement, if the complement of \(L \) is not Regular, then neither is \(L \). \(L^C = \{ a^i b^j c^k \mid i \geq 0 \} \cup b^+ (a+c)^+ + c^+ (a+b)^+ \). Note that the latter two parts are regular and do not overlap the first part.

Me: \(L^C \) is regular

PL: Gives me \(N > 0 \) associated with \(L^C \)

Me: Choose \(w = a^N b^N c^N \) which is in \(L^C \)

PL: States \(w = xyz, |xy| \leq N, |y| > 0, xy^i z \in L^C \) for all \(i \geq 0 \)

Me: Choose \(i = 0 \). This says that \(xz = a^{N-|y|} b^N c^N \in L \). But, since \(|y| > 0 \) and there are no order problems (b’s before a’s or c’s, or c’s before a’s or b’s), this string is not in \(L^C \).

Thus, \(L^C \) is not Regular by Pumping Lemma for Regular Languages and, by closure of Regular under complement, \(L \) is not Regular.
c. \(L = \{ xw x | x, w \in \{a,b\}^+ \text{ and } |x| = |w| \} \)

I attack this with M-N. Let \(R_L \) be the right invariant equivalence relation defined for \(L \) by M-H. Consider \([a^ib^{i+1}]\) and \([a^ib^{j+1}]\) \(i < j \).

\(a^ib^{i+1}a \in L \) but \(a^ib^{i+1}a \notin L \), when \(j < i \), as last part ending \(b \) means that first part must also end in \(b \) and so each part ending in \(b \) must be preceded by \(i \) \(a \)'s. The problem then is that the middle part (the \(w \) part) would have length \(j+1 \) which is longer than the start and end parts (the \(x \) parts) which are of length \(i+1 \).

Thus, for any two distinct \(i, j, i \neq j, [a^ib^{i+1}] \neq [a^ib^{j+1}] \). Note that, if \(i < j \), we have from above; if \(i > j \), then reverse roles of \(i \) and \(j \) and get result from above.

\(L \) is not Regular by Myhill-Nerode Theorem.
Assignment # 5.1c (PL)

c. \(L = \{ x \; w \; x \mid x, \; w \in \{a,b\}^+ \text{ and } |x| = |w| \} \)

PL: Gives me \(N>0 \) associated with \(L \)
Me: Choose \(v=a^Nba^Nba^Nb \) which is in \(L \)
PL: States \(v=xyz, \; |xy|\leq N, \; |y|>0, \; xy^iz \in L \text{ for all } i\geq0 \)
Me: Choose \(i = 0 \). \(a^{N-|y|}ba^Nba^Nb \notin L \) since third \(b \) must have same number of \(a \)'s preceding it as first \(b \), so middle part is \(a^{Nba^{|y|}} \), which is longer that the starting part.

Thus, \(L \) is not Regular by Pumping Lemma for Regular Languages.
2. Write a regular (right linear) grammar that generates \(L = \{ w \mid w \in \{0,1\}^* \text{ and } w \text{ interpreted as a binary number has a remainder of 3 or 4 when divided by 6 } \} \).

\[
\begin{align*}
\langle 0 \rangle & \rightarrow 0 \langle 0 \rangle \mid 1 \langle 1 \rangle \\
\langle 1 \rangle & \rightarrow 0 \langle 2 \rangle \mid 1 \langle 3 \rangle \\
\langle 2 \rangle & \rightarrow 0 \langle 4 \rangle \mid 1 \langle 5 \rangle \\
\langle 3 \rangle & \rightarrow 0 \langle 0 \rangle \mid 1 \langle 1 \rangle \mid \lambda \\
\langle 4 \rangle & \rightarrow 0 \langle 2 \rangle \mid 1 \langle 3 \rangle \mid \lambda \\
\langle 5 \rangle & \rightarrow 0 \langle 4 \rangle \mid 1 \langle 5 \rangle
\end{align*}
\]
2. Present a Mealy Model finite state machine that reads an input $x \in \{0, 1\}^*$ and produces the binary number that represents the result of adding binary 101 to x (assumes all numbers are positive, including results). Assume that x is read starting with its least significant digit. Examples: 0010 \rightarrow 0111; 0101 \rightarrow 1010; 0001 \rightarrow 0110; 0111 \rightarrow 1100