Assignment 2 Key

Question 1)

Consider the following function, \mathbf{p}, from \boldsymbol{N} to \boldsymbol{N}.
$\mathrm{p}(0)=0 ; p(\mathrm{x}+1)=\mathrm{p}(\mathrm{x})+\mathrm{x}+2$
Prove inductively that $\mathbf{p}(\mathbf{x})=\left(\mathbf{x}^{2}+\mathbf{3 x}\right) / \mathbf{2}$
Base: $\mathbf{x}=\mathbf{0} ;\left(\mathbf{x}^{2}+\mathbf{3 x}\right) / \mathbf{2}=(0+0) / \mathbf{2}=\mathbf{0}=\mathbf{p}(0)$ by definition.
IH : Assume $p(x)=\left(x^{2}+3 x\right) / 2$ for some $x=k \geq 0$
IS: Show for $\mathbf{x}=\mathbf{k + 1}$.
$\left((k+1)^{2}+3(k+1)\right) / 2=\left(k^{2}+2 k+1+3 k+3\right) / 2=\left(k^{2}+3 k+2 k+4\right) / 2=$ $\left(k^{2}+3 k\right) / 2+k+2=p(k)+k+2$ by IH.
But $\mathbf{p}(\mathbf{k} \mathbf{+ 1})=\mathbf{p}(\mathbf{k}) \mathbf{+ k}+\mathbf{2}$ by definition, proving what was desired.

Question 2)

Consider the following function, \mathbf{q}, from $\boldsymbol{\mathcal { N }}$ to $\boldsymbol{\aleph}$. $q(0)=0 ; q(y+1)=q(y)+y+1$
Prove inductively that $q(y)=\left(y^{2}+y\right) / 2$
Base: $\mathbf{y}=\mathbf{0} ;\left(\mathbf{y}^{\mathbf{2}}+\mathbf{y}\right) / \mathbf{2}=(\mathbf{0}+\mathbf{0}) / \mathbf{2}=\mathbf{0}=\mathbf{q}(\mathbf{0})$ by definition.
IH: Assume $q(x)=\left(y^{2}+\mathbf{y}\right) / \mathbf{2}$ for some $\mathbf{y}=k \geq 0$
IS: Show for $\mathbf{y}=\mathbf{k + 1}$.
$\left((k+1)^{2}+k+1\right) / 2=\left(k^{2}+2 k+1+k+1\right) / 2=\left(k^{2}+k+2 k+2\right) / 2=$
$\left(k^{2}+k\right) / \mathbf{2 + k + 1}=\mathbf{q}(k)+\mathbf{k + 1}$ by IH.
But $\mathbf{q}(\mathbf{k} \mathbf{+ 1})=\mathbf{q}(\mathbf{k}) \mathbf{+} \mathbf{k} \mathbf{1}$ by definition, proving what was desired.

Question 3)

Consider the two variable function, \mathbf{t}, from $\boldsymbol{N} \times \boldsymbol{N}$ to \boldsymbol{N}
$t(x, y)=\left(x^{2}+3 x+2 x y+y+y^{2}\right) / 2$
This embodies p and q, in that $p(x)=t(x, 0)$ and $q(y)=t(0, y)$. Fill in the following matrix with values of $t(x, y)$ along the first four left to right diagonals (x is horizontal axis; y is vertical axis).
Explain what the pattern is and how you could continue to fill in diagonals without ever looking back at the formula.
Every diagonal starts at the top y cell $(x=0)$ in new diagonal as one more than the value of the last value written ($\mathrm{y}=0$) in previous diagonal and increment values by one for each subsequent cell on the diagonal. For our case, next diagonal's values are 10, 11, 12, 13, 14.

