Assignment # 10.1 Key

	а	b	С	a + b + c	~a + ~b + ~c a + ~b + ~c		
a	1	0	0	1	0	1	
~a	1	0	0	0	1	0	
b	0	1	0	1	0	0	
~b	0	1	0	0	1	1	
с	0	0	1	1	0	0	
~c	0	0	1	0	1	1	
С1	0	0	0	1	0	0	
C1 '	0	0	0	1	0	0	
C2	0	0	0	0	1	0	
C2 '	0	0	0	0	1	0	
С3	0	0	0	0	0	1	
C3 '	0	0	0	0	0	1	
	1	1	1	3	3	3	

Assignment # 10.2 Key

2. Recast the SubsetSum problem [(17, 27, 11, 2, 7, 3, 22), G=39] as a Partition Problem using the construction discussed in class. Indicate what values would need to be chosen to equal 39. Indicate the partitions that evenly divide the Partition Problem you posed

 $\{17, 27, 11, 2, 7, 3, 22\}$ 17+22 = 39 $\{17, 27, 11, 2, 7, 3, 22, 139, 128\}$ Can partition as $\{17, 22, 139\} = 178;$ $\{27, 11, 2, 7, 3, 128\} = 178$

Assignment # 10.3 Key

3. Recast the decision problem for the Boolean expression (a+b+c)(~a+~b+~c)(a+~b+~c) as a 0,1-Integer Linear Programming Problem using the construction discussed in class. Indicate what binary (0,1) values of a, b, c and d give rise to a solution to the Integer Linear Programming problem you posed.

```
0≤a≤1; 0≤b≤1; 0≤c≤1
```

```
a + b + c ≥ 1
```

```
(1-a) + (1-b) + (1-c) \ge 1
```

```
a + (1-b) + (1-c) \ge 1
```

Solution: a = 1; b = 0; c = 0 – Lots of other solutions