Assignment 1 Key

Question 2)

Prove the following: Let R be an equivalence relation over some universe U, and let C_a be the class of all elements in U equivalent to the element a, i.e., $C_a = \{x \mid x \in U \&\& a R x\}$, and C_b be the class of all elements in U equivalent to the element b, i.e., $C_b = \{x \mid x \in U \&\& b R x\}$. Prove that either $C_a = C_b$ or $C_a \cap C_b = \Phi$.

Answer

Proof: First, given any two subsets of any universe *U*, either the subsets overlap or they have no common elements. Thus, for C_{a} and C_{b} , either $C_a \cap C_b = \Phi$, and we are done, or $C_a \cap C_b \neq \Phi$. In this latter case, there is at least one element $z \in U$, such that $z \in C_a$ and $z \in C_b$. Thus, **a R z** and **b R z**. Since **R** is an equivalence relation, **b R z** implies *z R b* by symmetry and then *a R b* by transitivity and **b** R a by symmetry. Thus, $b \in C_a$ and $a \in C_b$, and consequently, based on symmetry, all members of C_a are in C_b , and vice versa. Mutual inclusion then means $C_a = C_b$, completing the proof. Note that reflexivity guarantees that all elements of **U** are in some class, so *R* partitions the universe *U*.