Assignment 1 Key
Question 2)

Prove the following: Let R be an equivalence relation over some universe U, and let C_a be the class of all elements in U equivalent to the element a, i.e., $C_a = \{x | x \in U \land a R x \}$, and C_b be the class of all elements in U equivalent to the element b, i.e., $C_b = \{x | x \in U \land b R x \}$.

Prove that either $C_a = C_b$ or $C_a \cap C_b = \emptyset$.
Proof: First, given any two subsets of any universe U, either the subsets overlap or they have no common elements. Thus, for C_a and C_b, either $C_a \cap C_b = \Phi$, and we are done, or $C_a \cap C_b \neq \Phi$. In this latter case, there is at least one element $z \in U$, such that $z \in C_a$ and $z \in C_b$. Thus, $a \ R \ z$ and $b \ R \ z$. Since R is an equivalence relation, $b \ R \ z$ implies $z \ R \ b$ by symmetry and then $a \ R \ b$ by transitivity and $b \ R \ a$ by symmetry. Thus, $b \in C_a$ and $a \in C_b$, and consequently, based on symmetry, all members of C_a are in C_b, and vice versa. Mutual inclusion then means $C_a = C_b$, completing the proof. Note that reflexivity guarantees that all elements of U are in some class, so R partitions the universe U.