Assignment 1 Key

## Question 2)

Prove the following: Let $\boldsymbol{R}$ be an equivalence relation over some universe $\boldsymbol{U}$, and let $\boldsymbol{C}_{a}$ be the class of all elements in $\boldsymbol{U}$ equivalent to the element $a$, i.e., $C_{a}=\{x \mid x \in U \& \& a R x\}$, and $C_{b}$ be the class of all elements in $\boldsymbol{U}$ equivalent to the element $\boldsymbol{b}$, i.e., $C_{b}=\{x \mid x \in U \& \& b R x\}$. Prove that either $\boldsymbol{C}_{a}=\boldsymbol{C}_{b}$ or $\boldsymbol{C}_{a} \cap \boldsymbol{C}_{b}=\boldsymbol{\Phi}$.

## Answer

Proof: First, given any two subsets of any universe $\boldsymbol{U}$, either the subsets overlap or they have no common elements. Thus, for $\boldsymbol{C}_{\mathrm{a}}$ and $\boldsymbol{C}_{\boldsymbol{b}}$, either $\boldsymbol{C}_{a} \cap \boldsymbol{C}_{b}=\boldsymbol{\Phi}$, and we are done, or $\boldsymbol{C}_{a} \cap \boldsymbol{C}_{b} \neq \boldsymbol{\Phi}$. In this latter case, there is at least one element $\boldsymbol{z} \in \boldsymbol{U}$, such that $\boldsymbol{z} \in C_{a}$ and $\boldsymbol{z} \in C_{b}$. Thus, a $\boldsymbol{R} \boldsymbol{z}$ and $\boldsymbol{b} \boldsymbol{R} \mathbf{z}$. Since $\boldsymbol{R}$ is an equivalence relation, $\boldsymbol{b} \boldsymbol{R} \mathbf{z}$ implies $\boldsymbol{z} \boldsymbol{R} \boldsymbol{b}$ by symmetry and then $\boldsymbol{a} \boldsymbol{R} \boldsymbol{b}$ by transitivity and $\boldsymbol{b} \boldsymbol{R}$ a by symmetry. Thus, $\boldsymbol{b} \in \boldsymbol{C}_{\mathrm{a}}$ and $\boldsymbol{a} \in \boldsymbol{C}_{\boldsymbol{b}}$, and consequently, based on symmetry, all members of $\boldsymbol{C}_{a}$ are in $\boldsymbol{C}_{\boldsymbol{b}}$, and vice versa. Mutual inclusion then means $\boldsymbol{C}_{\boldsymbol{a}}=\boldsymbol{C}_{\boldsymbol{b}}$, completing the proof. Note that reflexivity guarantees that all elements of $\boldsymbol{U}$ are in some class, so $\boldsymbol{R}$ partitions the universe $\boldsymbol{U}$.

