Assignment \# 9.1a Key

1. Use quantification of an algorithmic predicate to estimate the complexity (decidable, re, co-re, non-re) of each of the following, (a)-(d):
a) REPEATS $=\{f \mid$ for some x and $y, x \neq y, f(x) \downarrow, f(y) \downarrow$ and $f(x)==f(y)\}$
b) DOUBLES $=\{f \mid$ for all $x, f(x) \downarrow, f(x+1) \downarrow$ and $f(x+1)=2 * f(x)\}$
c) DIVEVEN $=\left\{f \mid\right.$ for all $\left.x, f\left(2^{*} x\right) \uparrow\right\}$
d) QUICK10 $=\{\mathrm{f} \mid \mathrm{f}(\mathrm{x})$, for all $0 \leq \mathrm{x} \leq 9$, converges in at most $\mathrm{x}+10$ steps $\}$

Assignment \# 9.21 Key

2. Let sets A be recursive (decidable) and B be re non-recursive (undecidable).
Consider $C=\{z \mid \min (x, y)$, where $x \in A$ and $y \in B\}$. For (a)-(c), either show sets A and B with the specified property or demonstrate that this property cannot hold.
a) Can C be recursive?
b) Can C be re, non-recursive?
c) Can C be non-re?
