Assignment \# 7.1a Sample Key

1. For the following languages, either provide a grammar to show it is a CFL or employ the Pumping Lemma to show it is not
a.) $\mathbf{L}=\left\{\mathbf{a}^{\boldsymbol{i}} \mathbf{b}^{\boldsymbol{j}} \mid \mathbf{j}>\mathbf{2}^{*} \mathbf{I}\right\}$

This language is a CFL. A grammar that works is $S \rightarrow a S b b|S b| b$

Assignment \# 7.1b Sample Key

1. b.) $L=\left\{a^{n} b^{n!} \mid n>0\right\}$

PL: Provides $N>0$
We: Choose $a^{N} b^{N!} \in L$
PL: Splits $a^{N} b^{N!}$ into $u v w x y,|v w x| \leq N,|v x|>0$, such that $\forall i \geq 0 u v^{i} w x^{i} y \in L$
We: Choose $i=2$
Case 1: vwx contains only b's, then we are increasing the number of b's while leaving the number of a's unchanged. In this case $u v^{2} w x^{2} y$ is of form $a^{N} b^{N!+c}, c>0$ and this is not in L.
Case 2: vwx contains some a's and maybe some b's. Under this circumstances $u v^{2} w x^{2} y$ has at least $N+1$ a's and at most $N!+N-1$ b's. But $(N+1)!=N!(N+1)=$ $N!* N+N \geq N!+N>N!+N-1$ and so is not in L.
Cases 1 and 2 cover all possible situations, so L is not a CFL

Assignment \# 7.2 Sample Key

2. Consider the context-free grammar $\mathbf{G}=(\{\mathbf{S}\},\{\mathbf{a}, \mathbf{b}\}, \mathbf{S}, \mathbf{P})$, where \mathbf{P} is: $\mathbf{S} \rightarrow \mathbf{S a S b S} \mid \mathbf{S b S a S | S a S a S | a | \lambda}$
Provide the first part of the proof that
$\mathbf{L}(\mathbf{G})=\mathbf{L}=\{\mathbf{w} \mid \mathbf{w}$ has at least as many a's as b's $\}$
That is, show that $\mathbf{L}(\mathbf{G}) \subseteq \mathbf{L}$
To attack this problem we can first introduce the notation that, for a syntactic form α, $\alpha_{a}=$ the number of a's in α, and $\alpha_{b}=$ the number of b's in α. Using this, we show that if $\mathbf{S} \Rightarrow * \alpha$, then $\alpha_{b} \leq \alpha_{a}$ and hence that $\mathbf{L}(\mathbf{G}) \subseteq \mathbf{L}$:
A straightforward approach is to show, inductively on the number of steps, \mathbf{i}, in a derivation, that, if $S \Rightarrow i \alpha$, then $\alpha_{b} \leq \alpha_{a}$.

Assignment \# 7.2 Sample Key

Basis ($\mathrm{i}=1$): Since $\mathrm{S} \Rightarrow \alpha$ iff $S \rightarrow \alpha$ and all rhs of S have $\alpha_{b} \leq \alpha_{a}$ then the base case holds
IH: Assume if $S \Rightarrow_{m} \alpha$, then $\alpha_{b} \leq \alpha_{a}$, whenever $m \leq n$
IS: Show that if $S \Rightarrow{ }_{n+1} \alpha$, then $\alpha_{b} \leq \alpha_{a}$
If $S \alpha$ then $S \Rightarrow_{n} \beta$ and $\beta \Rightarrow \alpha$
Since G has only one non-terminal S, the rewriting of β to α involves a single application of one of the S-rules. By the I.H., β has the property that $\beta_{b} \leq \beta_{a}$. Since a single application of an S rule either adds no b 's or a 's, one a, one a and one b, or two b's, we have the three following cases:

Assignment \# 7.2 Sample key

Case 0:
$\alpha_{a}=\beta_{a}$ and $\alpha_{b}=\beta_{b}$
In which case, using the IH , we have:
$\beta_{b} \leq \beta_{a} \rightarrow \alpha_{b} \leq \alpha_{a}$
Case 1: $\quad \alpha_{b}=\beta_{b}$, and $\alpha_{a}=\beta_{a}+1$
In which case, using the IH , we have:
$\beta_{b} \leq \beta_{a} \rightarrow \alpha_{b} \leq \alpha_{a}$
Case 2: $\quad \alpha_{b}=\beta_{b}+1$, and $\alpha_{a}=\beta_{a}+1$
In which case, using the IH, we have:
$\beta_{b} \leq \beta_{a} \rightarrow \alpha_{b} \leq \alpha_{a}$
Case 3:
$\alpha_{b}=\beta_{b}$, and $\alpha_{a}=\beta_{a}+2$
In which case, using the IH, we have:
$\beta_{b} \leq \beta_{a} \rightarrow \alpha_{b} \leq \alpha_{a}$

