Assignment \# 5 Sample

1. For each of the following, prove it is not regular by using the Pumping Lemma or Myhill-Nerode. You must do at least one of these using the Pumping Lemma and at least one using Myhill-Nerode.
a. $\left\{a^{2^{\wedge} k+1} \mid k \geq 0\right\}$ (note: $2^{\wedge} k+1$, so get $\left\{a^{2}, a^{3}, a^{5}, a^{9}, a^{17}, \ldots\right\}$)
b. $\left\{a^{i b j} c^{k} \mid i \geq 0, j \geq 0, k \geq 0\right.$, if $i=0$ then $\left.j=2 k\right\}$
c. $\left\{x y z \mid x, y, z \in\{a, b\}^{*}\right.$ and $\left.y=x z\right\}$
2. Write a regular (right linear) grammar that generates the set of strings denoted by the regular expression $\left(\left((01+10)^{+}\right)(11)\right)^{*}(00)^{*}$. You may use extended grammars where rules are of form $\mathbf{A} \rightarrow \alpha$ and $\mathbf{A} \rightarrow \alpha \mathbf{B}, \alpha \in \Sigma^{*}$ and \mathbf{A}, \mathbf{B} non-terminals
3. Write a Mealy finite state machine that produces the 2's complement result of subtracting 1101 from a binary input stream (assuming at least 3 bits of input)
