Assignment # 5

- 1. For each of the following, prove it is not regular by using the Pumping Lemma or Myhill-Nerode. You must do at least one of these using the Pumping Lemma and at least one using Myhill-Nerode.
- a. { a^{2^k+1} | k≥0 } (note: 2^k+1, so get {a², a³, a⁵, a⁹, a¹⁷, … })
- b. { $a^{i}b^{j}c^{k}$ | $i \ge 0$, $j \ge 0$, $k \ge 0$, if i=0 then j=2k }
- c. $\{ xyz \mid x, y, z \in \{a, b\}^* \text{ and } y = xz \}$
- 2. Write a regular (right linear) grammar that generates the set of strings denoted by the regular expression $(((01 + 10)^+)(11))^* (00)^*$. You may use extended grammars where rules are of form $\mathbf{A} \rightarrow \alpha$ and $\mathbf{A} \rightarrow \alpha \mathbf{B}$, $\alpha \in \Sigma^*$ and \mathbf{A}, \mathbf{B} non-terminals
- 3. Write a Mealy finite state machine that produces the 2's complement result of subtracting 1101 from a binary input stream (assuming at least 3 bits of input)

Assignment # 5.1

- 1. For each of the following, prove it is not regular by using the Pumping Lemma or Myhill-Nerode. You must do at least one of these using the Pumping Lemma and at least one using Myhill-Nerode.
- a. { $a^{2^{k+1}} | k \ge 0$ } (note: 2^k+1, so get { a^2 , a^3 , a^5 , a^9 , a^{17} , ... }) b. { $a^i b^j c^k | i \ge 0$, $j \ge 0$, $k \ge 0$, if i=0 then j=2k } c. { xyz | x,y,z \in {a, b}* and y = xz }

Assignment # 5.1 Answer

1a. **{a^{2^k+1} | k ≥ 0 }** using P.L.

- 1. Assume that **L** is regular
- 2. Let N be the positive integer given by the Pumping Lemma
- 3. Let **s** be a string $\mathbf{s} = \mathbf{a}^{2^{N+1}} \in \mathbf{L}$
- 4. Since $s \in L$ and $|s| \ge N$, s is split by PL into xyz, where $|xy| \le N$ and |y| > 0 and for all $i \ge 0$, $xy^iz \in L$
- 5. We choose i = 2; by PL: $xy^2z = xyyz \in L$
- 6. Thus, a^{2^N+1+|y|} would be in L. This means that there is number in L between a^{2^N+1} and a^{2^N+1+N|}, but next number after 2^N+1 is 2^(N+1)+1. The distance is 2^N between these number and 2^N is greater than N for all values of N, meaning a^{2^N+1+|y|} cannot be in L. This is a contradiction, therefore L is not regular ■

1b. { aⁱb^jc^k | i≥0, j≥0, k≥0, if i=0 then j=2k } using P.L.

- 1. Assume that **L** is regular
- 2. Let N be the positive integer given by the Pumping Lemma
- 3. Let **s** be the string $\mathbf{s} = \mathbf{b}^{2N} \mathbf{c}^{N} \in \mathbf{L}$
- 4. Since $s \in L$ and $|s| \ge N$, s is split by PL into xyz, where $|xy| \le N$ and |y| > 0 and for all $i \ge 0$, $xy^iz \in L$
- 5. We choose i = 0; by PL: $xy^0z = xz \in L$
- 6. Thus, $|b^{2N-|y|}c^{N}$ would be in L, but it's not since 2N-|y| < 2N
- 7. This is a contradiction, therefore L is not regular

Assignment # 5.1 Answer

1c. { $xyz | x,y,z \in \{a, b\}^*$ and y = xz } using P.L.

- 1. Assume that L is regular
- 2. Let N be the positive integer given by the Pumping Lemma
- 3. Let **s** be the string $\mathbf{s} = \mathbf{a}^{N}\mathbf{b}\mathbf{a}^{N}\mathbf{b} \in \mathbf{L}$
- 4. Since s ∈ L and |s| ≥ N, s is split by PL into xyz, where |xy| ≤ N and |y| > 0 and for all i ≥ 0, xyⁱz ∈ L
- 5. We choose $\mathbf{i} = \mathbf{0}$; by PL: $\mathbf{x}\mathbf{y}^{\mathbf{0}}\mathbf{z} = \mathbf{x}\mathbf{z} \in \mathbf{L}$
- 6. Thus, **a^{N-|y|}ba^Nb** would be in **L**.

One **b** has to be part of **x** and the other of **y**, or of **y** and **z**. If one **b** in **x** then, since $N-|y| \neq N$, this is not of the proper form. If the **b**'s are in **y** and **z**, then we ecounter the same issue.

7. This is a contradiction, therefore L is not regular ■

Assignment # 5.1 Answer

1a. **{a^{2^k+1} | k ≥ 0 }** using M.N.

We consider the collection of right invariant equivalence classes $[a^{2^{i+1}}]$, $i \ge 0$. It's clear that $a^{2^{i+1}} a^{2^{i}} = a^{2^{i+1}+1}$ is in the language, but $a^{2^{i+1}} a^{2^{i}} = a^{2^{i+2^{i+1}}}$ is not as $2^{j+2^{i}}$ is not a power of two when $i \ne j$. To see this, assume wlog that j > i, then the next power of two after 2^{j} is $2^{(j+1)} = 2^{j} + 2^{j} > 2^{j} + 2^{i}$.

This shows that there is a separate equivalence class $[a^{Fib(j)}]$ induced by R_L , for each j > 2. Thus, the index of R_L is infinite and Myhill-Nerode states that L cannot be Regular.

1b. { **a**ⁱ**b**^j**c**^k | **i≥0**, **j≥0**, **k≥0**, **if i=0 then j=2k** } using M.N.

We consider the collection of right invariant equivalence classes $[b^{2i}]$, $i \ge 0$. It's clear that $b^{2i}c^i$ is in the language, but $b^{2j}c^i$ is not when $j \ne i$ This shows that there is a separate equivalence class $[b^{2i}]$ induced by R_L , for each $i \ge 0$. Thus, the index of R_L is infinite and Myhill-Nerode states that L cannot be Regular.

1c. { xyz | $x,y,z \in \{a, b\}^*$ and y = xz } using M.N.

We consider the collection of right invariant equivalence classes $[a^{j}b]$, $i \ge 0$. It's clear that $a^{j}ba^{j}b$ is in the language, but $a^{j}ba^{i}b$ is not when $j \ne i$ This shows that there is a separate equivalence class $[a^{j}b]$ induced by R_L , for each $i\ge 0$. Thus, the index of R_L is infinite and Myhill-Nerode states that L cannot be Regular. 1/28/17COT 4210 © UCF

Assignment # 5.2

2. Write a regular (right linear) grammar that generates the set of strings denoted by the regular expression $(((01 + 10)^+)(11))^* (00)^*$. You may use extended grammars where rules are of form $\mathbf{A} \rightarrow \alpha$ and $\mathbf{A} \rightarrow \alpha \mathbf{B}$, $\alpha \in \Sigma^*$ and \mathbf{A}, \mathbf{B} non-terminals

Assignment # 5.3

Write a Mealy finite state machine that produces the 2's complement result of subtracting 1101 from a binary input stream (assuming at least 3 bits of input)

Answer

