Assignment \# 5

1. For each of the following, prove it is not regular by using the Pumping Lemma or Myhill-Nerode. You must do at least one of these using the Pumping Lemma and at least one using Myhill-Nerode.
a. $\left\{a^{2^{\wedge} k+1} \mid k \geq 0\right\}$ (note: $2^{\wedge} k+1$, so get $\left\{a^{2}, a^{3}, a^{5}, a^{9}, a^{17}, \ldots\right\}$)
b. $\left\{a^{i b j} c^{k} \mid i \geq 0, j \geq 0, k \geq 0\right.$, if $i=0$ then $\left.j=2 k\right\}$
c. $\left\{x y z \mid x, y, z \in\{a, b\}^{*}\right.$ and $\left.y=x z\right\}$
2. Write a regular (right linear) grammar that generates the set of strings denoted by the regular expression $\left(\left((01+10)^{+}\right)(11)\right)^{*}(00)^{*}$. You may use extended grammars where rules are of form $\mathbf{A} \rightarrow \alpha$ and $\mathbf{A} \rightarrow \alpha \mathbf{B}, \alpha \in \Sigma^{*}$ and \mathbf{A}, \mathbf{B} non-terminals
3. Write a Mealy finite state machine that produces the 2's complement result of subtracting 1101 from a binary input stream (assuming at least 3 bits of input)

Assignment \# 5.1

1. For each of the following, prove it is not regular by using the Pumping Lemma or Myhill-Nerode. You must do at least one of these using the Pumping Lemma and at least one using Myhill-Nerode.
a. $\left\{a^{2^{2} k+1} \mid k \geq 0\right\}$ (note: $2^{\wedge} k+1$, so get $\left\{a^{2}, a^{3}, a^{5}, a^{9}, a^{17}, \ldots\right\}$)
b. $\left\{a^{i b j} c^{k} \mid i \geq 0, j \geq 0, k \geq 0\right.$, if $i=0$ then $\left.j=2 k\right\}$
c. $\left\{x y z \mid x, y, z \in\{a, b\}^{*}\right.$ and $\left.y=x z\right\}$

Assignment \# 5.1 Answer

1a. $\left\{a^{2^{\wedge} k+1} \mid k \geq 0\right\}$ using P.L.

1. Assume that L is regular
2. Let \mathbf{N} be the positive integer given by the Pumping Lemma
3. Let \mathbf{s} be a string $\mathbf{s}=\mathbf{a}^{\mathbf{2}^{\wedge} \mathrm{N}+1} \in \mathbf{L}$
4. Since $\mathbf{s} \in \mathbf{L}$ and $|\mathbf{s}| \geq \mathbf{N}$, \mathbf{s} is split by $P L$ into $\mathbf{x y z}$, where $|x y| \leq N$ and $|y|>0$ and for all $i \geq 0, x^{i} \mathbf{z} \in \mathbf{L}$
5. We choose $\mathbf{i}=\mathbf{2}$; by PL: $\boldsymbol{x y}^{2} \mathbf{z}=\mathbf{x y y z} \in \mathrm{L}$
6. Thus, $a^{2^{\wedge} N+1+|y|}$ would be in L. This means that there is number in L between $a^{2^{\wedge} N+1}$ and $a^{2^{\wedge} N+1+N \mid}$, but next number after $\mathbf{2}^{\wedge} \mathbf{N + 1}$ is $\mathbf{2}^{\wedge}(\mathbf{N + 1})+\mathbf{1}$. The distance is $2^{\wedge} N$ between these number and $2^{\wedge} N$ is greater than N for all values of N, meaning $a^{2^{\wedge} N+1+|y|}$ cannot be in L.
This is a contradiction, therefore L is not regular

1b. $\left\{a^{i} b^{j} c^{k} \mid i \geq 0, j \geq 0, k \geq 0\right.$, if $i=0$ then $\left.j=2 k\right\}$ using P.L.

1. Assume that L is regular
2. Let \mathbf{N} be the positive integer given by the Pumping Lemma
3. Let \mathbf{s} be the string $\mathbf{s}=\mathbf{b}^{\mathbf{2 N}} \mathbf{c}^{\mathbf{N}} \in \mathbf{L}$
4. Since $s \in L$ and $|\mathbf{s}| \geq N$, \mathbf{s} is split by $P L$ into $x y z$, where $|x y| \leq N$ and $|y|>0$ and for all $i \geq 0, x^{\prime} \mathbf{z} \in L$
5. We choose $\mathbf{i}=\mathbf{0}$; by PL: $\mathbf{x} \mathbf{y}^{\mathbf{0}} \mathbf{z}=\mathbf{x z} \in \mathbf{L}$
6. Thus, $\mid b^{2 N-|y|} \mathrm{c}^{\mathrm{N}}$ would be in L , but it's not since $\mathbf{2 N}-|y|<\mathbf{2 N}$
7. This is a contradiction, therefore L is not regular

Assignment \# 5.1 Answer

1c. $\left\{x y z \mid x, y, z \in\{a, b\}^{*}\right.$ and $\left.y=x z\right\}$ using P.L.

1. Assume that L is regular
2. Let \mathbf{N} be the positive integer given by the Pumping Lemma
3. Let \mathbf{s} be the string $\mathbf{s}=\mathbf{a}^{\mathbf{N}} \mathbf{b a}^{\mathrm{N}} \mathbf{b} \in \mathrm{L}$
4. Since $\mathbf{s} \in L$ and $|\mathbf{s}| \geq \mathbf{N}$, \mathbf{s} is split by $P L$ into $\mathbf{x y z}$, where $|x y| \leq N$ and $|y|>0$ and for all $i \geq 0, x^{\prime} \mathbf{z}$ $\in L$
5. We choose $\mathbf{i}=\mathbf{0}$; by PL: $\mathbf{x y}^{\mathbf{0}} \mathbf{z}=\mathbf{x z} \in \mathbf{L}$
6. Thus, $\mathbf{a}^{\mathrm{N}-\mathrm{y} \mid \mathrm{b}} \mathbf{a}^{\mathrm{N}} \mathbf{b}$ would be in L .

One \mathbf{b} has to be part of \mathbf{x} and the other of \mathbf{y}, or of \mathbf{y} and \mathbf{z}. If one \mathbf{b} in \mathbf{x} then, since $\mathbf{N}-|\mathbf{y}| \neq \mathbf{N}$, this is not of the proper form. If the \mathbf{b} 's are in \mathbf{y} and \mathbf{z}, then we ecounter the same issue.
7. This is a contradiction, therefore L is not regular

Assignment \# 5.1 Answer

1a. $\left\{a^{2{ }^{2} k+1} \mid k \geq 0\right\}$ using M.N.
We consider the collection of right invariant equivalence classes $\left[\mathbf{a}^{2^{\wedge i+1}}\right], \mathbf{i} \geq \mathbf{0}$.
 is not a power of two when $\mathbf{i} \neq \mathbf{j}$. To see this, assume wlog that $j>\mathbf{i}$, then the next power of two after $\mathbf{2}^{\boldsymbol{\wedge}} \mathbf{j}$ is $\mathbf{2}^{\boldsymbol{\wedge}}(\mathbf{j}+\mathbf{1})=\mathbf{2}^{\boldsymbol{\wedge}} \mathbf{j}+\mathbf{2}^{\boldsymbol{\wedge}} \mathbf{j}>\mathbf{2}^{\boldsymbol{\wedge}} \mathbf{j}+\mathbf{2}^{\boldsymbol{\wedge}} \mathbf{i}$.
This shows that there is a separate equivalence class [a ${ }^{\text {Fib(}}$) $]$ induced by \mathbf{R}_{L}, for each $\mathrm{j}>\mathbf{2}$. Thus, the index of \mathbf{R}_{L} is infinite and Myhill-Nerode states that \mathbf{L} cannot be Regular.

1b. $\left\{a^{i} b^{j} c^{k} \mid i \geq 0, j \geq 0, k \geq 0\right.$, if $i=0$ then $\left.j=2 k\right\}$ using M.N.

We consider the collection of right invariant equivalence classes [b²i], $\mathbf{i} \geq \mathbf{0}$.
It's clear that $\mathbf{b}^{\mathbf{2}} \mathbf{c}^{\mathbf{i}}$ is in the language, but $\mathbf{b}^{2 \mathbf{j}} \mathbf{c}^{\mathbf{i}}$ is not when $\mathbf{j} \boldsymbol{\neq \mathbf { i }}$
This shows that there is a separate equivalence class [b$\left.{ }^{2 i}\right]$ induced by \mathbf{R}_{L}, for each $\mathbf{i} \geq \mathbf{0}$.
Thus, the index of \mathbf{R}_{L} is infinite and Myhill-Nerode states that L cannot be Regular.
1c. $\left\{x y z \mid x, y, z \in\{a, b\}^{*}\right.$ and $\left.y=x z\right\}$ using M.N.
We consider the collection of right invariant equivalence classes [aib], $\mathbf{i} \geq \mathbf{0}$.
It's clear that $\mathbf{a}^{\mathbf{j}} \mathbf{b a j}$ is in the language, but ajbaib is not when $\mathbf{j} \neq \mathbf{i}$
This shows that there is a separate equivalence class [ajb] induced by \mathbf{R}_{L}, for each $\mathrm{i} \geq \mathbf{0}$.
Thus, the index of $\mathbf{R}_{\mathbf{L}}$ is infinite and Myhill-Nerode states that \mathbf{L} cannot be Regular.

Assignment \# 5.2

2. Write a regular (right linear) grammar that generates the set of strings denoted by the regular expression $\left(\left((01+10)^{+}\right)(11)\right)^{*}(00)^{*}$. You may use extended grammars where rules are of form $\mathbf{A} \rightarrow \alpha$ and $\mathbf{A} \rightarrow \alpha \mathbf{B}, \alpha \in \Sigma^{*}$ and \mathbf{A}, \mathbf{B} non-terminals
```
G = ({S,T,U,V}, {0,1},S,P)
P:
S }->\textrm{T}|
T ->01T|10T|01U|10U
U }->\mathrm{ 11S
V }->00\textrm{V}|
```


Assignment \# 5.3

Write a Mealy finite state machine that produces the 2's complement result of subtracting 1101 from a binary input stream (assuming at least 3 bits of input)

