Assignment # 2.1 Sample

Prove or disprove, if p and q are distinct prime numbers (p \neq q), then $\sqrt{(pq)}$ is irrational.

Proof:

Assume \sqrt{pq} is a rational number. Let a/b be the reduced fraction (no common prime factors) that equals \sqrt{pq} .

 $\sqrt{(pq)} = a/b$: assumption (note a\neq b, as then pq=1)

 $pq = a^2/b^2$: square both sides

 $pqb^2 = a^2$: multiply both sides by b^2

 $pqb^2 = (kpq)^2$: for some k, as p and q must be prime

factors of a since a and b have no

common prime factors

 $b^2 = k^2pq$: divide both sides by pq

But then p and q must be prime factors of both a and b. But then a/b is not reduced as both have common prime factors p and q. This contradicts our original assumption that $\sqrt{(pq)}$ is rational, so it is irrational.

Assignment # 2.2 Sample

```
Prove, if L is a language over \Sigma then \lim(n\to\infty) L^n = \Sigma^* iff (\Sigma \cup \{\lambda\}) \subseteq L.
Note: L^k = \{x_1x_2...x_k | x_1,x_2,...,x_k \in L\}
```

Proof:

```
Assume (\Sigma \cup \{\lambda\}) \subseteq L. As \lambda \in L, L^k \subseteq L^{k+1}, for all k \ge 0, since L^k \cdot \lambda = L^k. By definition \Sigma^* = \{\lambda\} \cup \Sigma \cup \Sigma^2 \cup \ldots \cup \Sigma^j \cup \ldots = \bigcup_{k=0}^{\infty} \Sigma^k Since (\Sigma \cup \{\lambda\}) \subseteq L we have that, for each k \ge 0, L^k \subseteq L^{k+1} \subseteq \text{lim}(n \to \infty) L^n. Thus, for each k \ge 0, \Sigma^k \subseteq L^k \subseteq \text{lim}(n \to \infty) L^n and so \Sigma^* = \bigcup_{k=0}^{\infty} \Sigma^k \subseteq \text{lim}(n \to \infty) L^n. Given that L is a language over \Sigma then L \subseteq \Sigma^*, by definition, and therefore L^n \subseteq \Sigma^* for all n \ge 0 and so \text{lim}(n \to \infty) L^n \subseteq \text{lim}(n \to \infty) \Sigma^* \subseteq \Sigma^*. Putting this together, we have \text{lim}(n \to \infty) L^n = \Sigma^*. Thus, (\Sigma \cup \{\lambda\}) \subseteq L implies \text{lim}(n \to \infty) L^n = \Sigma^*. Assume \text{lim}(n \to \infty) L^n = \Sigma^*. Clearly L^{k+1} cannot contain strings shorter than those found in L^k as L^{k+1} = L^k L. Thus if any of (\Sigma \cup \{\lambda\}) is missing from L, then that element is also missing from all L^k, k > 1 and so \text{lim}(n \to \infty) L^n \neq \Sigma^*, which is a contradiction. Thus, \text{lim}(n \to \infty) L^n = \Sigma^* implies (\Sigma \cup \{\lambda\}) \subseteq L.
```

Second Solution for 2.2

Proof by Induction :

- Assume (Σ∪{λ}) ⊆ L.
 We want to prove that, ∀i≥0, Σ⁰∪Σ¹∪Σ²∪ ... ∪Σⁱ⊆ Lⁱ :
- Base: I = 0: as $\Sigma^0 = {\lambda} \subseteq L^0$ by definition of 0-th power (even ${\delta}$ 0 contains ${\delta}$ 1)
- Induction Hypothesis: Assume for some $i \ge 0$, $\Sigma^0 \cup \Sigma \cup \Sigma^2 \cup \ldots \cup \Sigma^i \subseteq L^i$
- Induction Step: Show for i+1

 - Because λ ∈ L, \forall k≥0, L^k ⊆ L^{k+1}
 - Hence, $\Sigma^0 \cup \Sigma \cup \Sigma^2 \cup \ldots \cup \Sigma^i \cup \Sigma^{i+1} \subseteq L^i \cup \Sigma^{i+1} \subseteq L^{i+1}$

As i goes to infinity The left side becomes Σ^* and right side becomes $\lim(n\to\infty) L^n$. Therefore $\Sigma^* \subseteq \lim(n\to\infty) L^n$.

 $\lim(n\to\infty) L^n \subseteq \Sigma^*$ is trivial. Now we can conclude that $\Sigma^* = \lim(n\to\infty) L^n$.