Assignment \# 2.1 Sample

Prove or disprove, if p and q are distinct prime numbers ($p \neq q$), then $\sqrt{ }(p q)$ is irrational.
Proof:
Assume $\sqrt{ } \mathrm{pq}$ is a rational number. Let a / b be the reduced fraction (no common prime factors) that equals $\sqrt{ }(p q)$.

$$
\begin{array}{ll}
V(p q)=a / b & : \text { assumption (note } a \neq b, \text { as then } p q=1) \\
p q=a^{2} / b^{2} & \text { square both sides } \\
p q b^{2}=a^{2} & \text { : multiply both sides by } b^{2} \\
p q b^{2}=(k p q)^{2} & \text { : for some } k, \text { as } p \text { and } q \text { must be prime } \\
& \text { factors of a since } a \text { and } b \text { have no } \\
& \text { common prime factors } \\
b^{2}=k^{2} p q & \text { : divide both sides by pq }
\end{array}
$$

But then p and q must be prime factors of both a and b. But then a / b is not reduced as both have common prime factors p and q. This contradicts our original assumption that $\sqrt{ }(\mathrm{pq})$ is rational, so it is irrational.

Assignment \# 2.2 Sample

Prove, if L is a language over Σ then $\lim (\mathrm{n} \rightarrow \infty) \mathrm{L}^{\mathrm{n}}=\Sigma^{*}$ iff $(\Sigma \cup\{\lambda\}) \subseteq \mathrm{L}$. Note: $L^{k}=\left\{x_{1} x_{2} \ldots x_{k} \mid x_{1}, x_{2}, \ldots, x_{k} \in L\right\}$

Proof:
Assume $(\Sigma \cup\{\lambda\}) \subseteq L$. As $\lambda \in L, L^{k} \subseteq L^{k+1}$, for all $k \geq 0$, since $L^{k} \cdot \lambda=L^{k}$.
By definition $\Sigma^{*}=\{\lambda\} \cup \Sigma \cup \Sigma^{2} \cup \ldots \cup \Sigma^{j} \cup \ldots=\cup_{k=0}^{\infty} \Sigma^{k}$
Since $(\Sigma \cup\{\lambda\}) \subseteq L$ we have that, for each $k \geq 0, L^{k} \subseteq L^{k+1} \subseteq \lim (n \rightarrow \infty) L^{n}$.
Thus, for each $\mathrm{k} \geq 0, \Sigma^{\mathrm{k}} \subseteq \mathrm{L}^{\mathrm{k}} \subseteq \lim (\mathrm{n} \rightarrow \infty) \mathrm{L}^{\mathrm{n}}$ and so $\Sigma^{*}=\cup_{k=0}^{\infty} \Sigma^{\mathrm{k}} \subseteq \lim (\mathrm{n} \rightarrow \infty) \mathrm{L}^{\mathrm{n}}$.
Given that L is a language over Σ then $L \subseteq \Sigma^{*}$, by definition, and therefore
$\mathrm{L}^{\mathrm{n}} \subseteq \Sigma^{*}$ for all $\mathrm{n} \geq 0$ and so $\lim (\mathrm{n} \rightarrow \infty) \mathrm{L}^{\mathrm{n}} \subseteq \lim (\mathrm{n} \rightarrow \infty) \Sigma^{*} \subseteq \Sigma^{*}$.
Putting this together, we have $\lim (n \rightarrow \infty) L^{n}=\Sigma^{*}$.
Thus, $(\Sigma \cup\{\lambda\}) \subseteq L$ implies $\lim (n \rightarrow \infty) L^{n}=\Sigma^{*}$.
Assume $\lim (n \rightarrow \infty) L^{n}=\Sigma^{*}$. Clearly L^{k+1} cannot contain strings shorter than those found in L^{k} as $L^{k+1}=L^{k} L$. Thus if any of $(\Sigma \cup\{\lambda\})$ is missing from L, then that element is also missing from all $L^{k}, k>1$ and so $\lim (n \rightarrow \infty) L^{n} \neq \Sigma^{*}$, which is a contradiction. Thus, $\lim (n \rightarrow \infty) L^{n}=\Sigma^{*}$ implies $(\Sigma \cup\{\lambda\}) \subseteq L$.

Second Solution for 2.2

- Proof by Induction :
- Assume $(\Sigma \cup\{\lambda\}) \subseteq L$.

We want to prove that, $\forall i \geq 0, \Sigma^{0} \cup \Sigma^{1} \cup \Sigma^{2} \cup \ldots \cup \Sigma^{i} \subseteq L^{i}$:

- Base: $I=0$: as $\Sigma^{0}=\{\lambda\} \subseteq L^{0}$ by definition of 0 -th power (even $\left\}^{0}\right.$ contains λ)
- Induction Hypothesis: Assume for some $\mathrm{i} \geq 0, \Sigma^{0} \cup \Sigma \cup \Sigma^{2} \cup \ldots \cup \Sigma^{i} \subseteq \mathrm{~L}^{i}$
- Induction Step: Show for $\mathrm{i}+1$
- $\Sigma^{i} \subseteq \mathrm{~L}^{i}$ by IH
- $\Sigma \subseteq L$ assumed

- Because $\lambda \in L, \forall k \geq 0, L^{k} \subseteq L^{k+1}$
- Hence, $\Sigma^{0} \cup \Sigma \cup \Sigma^{2} \cup \ldots \cup \Sigma^{i} \cup \Sigma^{i+1} \subseteq L^{i} \cup \Sigma^{i+1} \subseteq L^{i+1}$

As i goes to infinity The left side becomes Σ^{*} and right side becomes $\lim (n \rightarrow \infty) L^{n}$. Therefore $\Sigma^{*} \subseteq \lim (n \rightarrow \infty) L^{n}$.
$\lim (n \rightarrow \infty) L^{n} \subseteq \Sigma^{*}$ is trivial. Now we can conclude that $\Sigma^{*}=\lim (n \rightarrow \infty) L^{n}$.

