Assignment # 1 Sample

Prove or disprove the following:
For non-empty sets A and B, (AUB)=(A∩B) if and only if A=B

Part 1) Prove if A = B, then $(AUB)=(A \cap B)$

Assume A=B then showing $(AUB)=(A\cap B)$ is equivalent to showing $(AUA)=(A\cap A)$. Now, any set unioned or intersected with itself is that set. Thus, (AUA)=A and $(A\cap A)=A$ and so $(AUA)=(A\cap A)$, proving that A=B implies $(AUB)=(A\cap B)$. Note: This is true even if both are empty.

Part 2) Prove if $(AUB)=(A\cap B)$, then A=B

Assume otherwise, then there is some case where (AUB)=(A \cap B), but A \neq B. This means one set must have an element that is missing from the other. As A's and B's roles are symmetric and each is non-empty, we can choose to say that there is some x in A that is not in B. As x is in A, it is in (AUB), but since it is not in B then it is not in (A \cap B), and hence (AUB) \neq (A \cap B), but that contradicts our original assumption. Thus, (AUB)=(A \cap B) implies A = B.

Together Parts 1 and 2 show that, for non-empty A and B,

 $(AUB)=(A\cap B)$ if and only if A=B. Note: even here, the non-empty condition is superfluous as A \neq B implies one has an element and we can just choose that one without worrying if the other is empty or not.