Assignment \# 1 Sample

1. Prove or disprove the following:

For non-empty sets A and $B,(A \cup B)=(A \cap B)$ if and only if $A=B$
Part 1) Prove if $A=B$, then $(A \cup B)=(A \cap B)$
Assume $A=B$ then showing $(A \cup B)=(A \cap B)$ is equivalent to showing (AUA)=(A A A). Now, any set unioned or intersected with itself is that set.
Thus, $(A \cup A)=A$ and $(A \cap A)=A$ and so $(A \cup A)=(A \cap A)$, proving that $A=B$ implies $(A \cup B)=(A \cap B)$. Note: This is true even if both are empty.
Part 2) Prove if $(A \cup B)=(A \cap B)$, then $A=B$
Assume otherwise, then there is some case where $(A \cup B)=(A \cap B)$, but $A \neq B$.
This means one set must have an element that is missing from the other.
As A's and B's roles are symmetric and each is non-empty, we can choose to say that there is some x in A that is not in B. As x is in A, it is in (AUB), but since it is not in B then it is not in $(A \cap B)$, and hence $(A \cup B) \neq(A \cap B)$, but that contradicts our original assumption. Thus, $(A \cup B)=(A \cap B)$ implies $A=B$.
Together Parts 1 and 2 show that, for non-empty A and B, $(A \cup B)=(A \cap B)$ if and only if $A=B$. Note: even here, the non-empty condition is superfluous as $\mathrm{A} \neq \mathrm{B}$ implies one has an element and we can just choose that one without worrying if the other is empty or not.

