Assignment \# 10.1 Sample Key
 1. Recast the decision problem for the Boolean expression

$(a+b)(a+\sim b+c)(\sim b)$ as a SubsetSum problem using the construction discussed in class.

	a	b	c	$a+b+b$	$a+\sim b+c$	$\sim b+\sim b+\sim b$
a	1	0	0	1	1	0
$\sim a$	1	0	0	0	0	0
b	0	1	0	2	0	0
$\sim b$	0	1	0	0	1	3
c	0	0	1	0	1	0
$\sim c$	0	0	1	0	0	0
$C 1$	0	0	0	1	0	0
$C 1$,	0	0	0	1	0	0
$C 2$	0	0	0	0	1	0
$C 2$,	0	0	0	0	1	0
$C 3$	0	0	0	0	0	1
$C 3$,	0	0	0	0	0	1

Assignment \# 10.2 Sample Key

2. Recast the SubsetSum problem (8, 7, 6, 4, 6, 8, 2, 7, 2), $\mathrm{G}=19$ as a Partition Problem using the construction discussed in class.
(8, 7, 6, 4, 6, 8, 2, 7, 2, 81, 69)
Can partition as $(8,7,4,81)=100 ;(6,6,8,2,7,2,69)=100$

Assignment \# 10.3 Sample Key

3. Recast the decision problem for the Boolean expression $(a+b)(a+\sim b+c)(\sim b)$ as an Integer Linear Programming problem using the construction discussed in class.
$0 \leq a \leq 1 ; 0 \leq b \leq 1 ; 0 \leq c \leq 1 ;$
$a+b \geq 1$
$a+(1-b)+c \geq 1$
(1-b) ≥ 1
Solution: $a=1 ; b=0 ; c=1$ (or 0)
