
We assume that initial PDA was normalized to one with a single final state and that each 
step is either a PUSH (push new symbol on top of current top of stack) or POP (remove 
current top of stack). For the method from Hopcroft and Ullman, we start with a $ on 
bottom of stack and accept by final state and empty stack, For Sipser, we start with empty 
stack and accept by final state and empty stack. Also, Sipser’s method requires read of 
element from Se, whereas HU allows reading Se*. 
Consider the pushdown automaton A = ( { q, f } , { 0 , 1 , c } , { 0, 1, c, $ }, d, q, $, { f } ), 
where d defines transitions: 

d( q , 0 , $ ) = { ( q , PUSH(1)) } 
d( q , 1 , $ ) = { ( q , PUSH(0)) } 
d( q , 0 , 0 ) = { ( q , PUSH(1)) } 
d( q , 0 , 1 ) = { ( q , PUSH(1)) } 
d( q , 1 , 0 ) = { ( q , PUSH(0)) } 
d( q , 1 , 1 ) = { ( q , PUSH(0)) } 
d( q , c , 0 ) = { ( p , PUSH(c)) } 
d( q , c , 1 ) = { ( p , PUSH(c)) } 
d( p , l , c ) = { ( p , POP) } 
d( p , 0 , 0 ) = { ( p , POP) } 
d( p , 1 , 1 ) = { ( p , POP) } 
d( p , l , $ ) = { ( f , POP) } 

This generates the language E(A) = { w c h(w)R  | w Î {0,1}+  } and h(0)=1; h(1)=0 
Write the equivalent grammar using our class’s variant of the construction in Hopcroft, 
Motwani and Ullman. 
Hint: the starting non-terminal is: < q , $ , f >, meaning generate all string that are 
consumed when we start in q, and end up in f, having uncovered what’s below $. 

< q, $, f > ® 
| 

0 < q, 1, q > < q, $, f > 
0 < q, 1, p > < p, $, f > 

X 

 | 0 < q, 1, f > < f, $, f > X 
 | 1 < q, 0, q> < q, $, f  > X 
 | 1 < q, 0, p > < p, $, f >  
 | 1 < q, 0, f > < f, $, f  > X 
< q, 0, p > ® 

| 
0 < q, 1, p > < p, 0, p > 
1 < q, 0, p > < p, 0, p > 

 

 | c <p, 0, p >  
< q, 1, p > ® 

| 
0 < q, 1, p > < p, 1, p > 
1 < q, 0, p > < p, 1, p > 

 

 | c <p, 1, p >  
< p, 0, p > ® 0  
< p, 1, p > ® 1  
< p, $, f > ® l  

< q, 0, q>, < q, 1, q >, < f, $, f > can lead nowhere as states q and f never entered after 
popping the stack.  
 

Rewrite as 
S ® 0 T |  1 U  
T ® 0 T 1  |  1 U 1 | c 1 // owe you a 1 
U ® 0 T 0  |  1 U 0 | c 0 // owe you a 0 



Consider the pushdown automaton A = ( { q, f } , { 0 , 1 , c } , { 0, 1, c }, d, q, F, { f } ), 
where d defines transitions: 

d( q , 0 , l ) = { ( q , PUSH(1)) } 
d( q , 1 , l ) = { ( q , PUSH(0)) } 
d( q , c , l ) = { ( p , PUSH(c)) } 
d( p , l , c ) = { ( p , POP) } 
d( p , 0 , 0 ) = { ( p , POP), (f, POP) } 
d( p , 1 , 1 ) = { ( p , POP), (f, POP) } 

This generates the language E(A) = { w c h(w)R  | w Î {0,1}+  } and h(0)=1; h(1)=0 
Write the equivalent grammar using Sipser’s construction. 
The starting non-terminal is: Aq,f, meaning generate all string that are consumed when 
we start in q, and end up in f with the stack having the same contents as when we started 
in q. Note that the stack is empty at start and we allow top of stack to be ignored in 
transitions. 
There are two cases for any At,u. Either something is pushed on stack and it gets back to 
its starting point at some intermediate state, v, and then back to the start at u  
(At,u® At,v Av,u) or the first transition from t involves a PUSH and the last to u involves a 
POP. In this case, the input is of the form xwy, where the x is read at the PUSH and the y at the 
POP, where x,y ÎSe and wÎSe* 

 
Aq,f  ® Aq,q Aq,f Useless as becomes Aq,f®Aq,f since can never 

pop and end in q 
| Aq,p Ap,f Useless as can never push starting in p 
| Aq,f Af,f Useless as becomes Aq,f®Aq,f (see below) 
 Note that: Aq,f Af,p  is impossible 
|  0 Aq,p 1 Would have pushed a 1 on stack when in q and 
 must match it in p 
|  1 Aq,p 0  Would have pushed a 0 on stack when in q and 
 must match it in p 

Aq,p ® Aq,q Aq,p Useless as becomes Aq,p®Aq,p since can 
never pop and end in q 

| Aq,p Ap,p Useless as becomes Aq,p®Aq,p (see below)  
|  0 Aq,p 1  Would have pushed a 0 on stack when in q and 
 must match it with 1 in p 
|  1 Aq,p 0  Would have pushed a 1 on stack when in q and 
 must match it with 0 in p 
|  c Ap,p l This reduces to Aq,p®c 

Aq,q  ® l No other options as never pop and end in q 
Ap,p  ® l No other options as never p pushes onto stack 
Af,f ® l No other options as never p pushes onto stack 

 
Rewrite as 
S ® 0 T 1  |  1 T 0 
T ® 0 T 1  |  1 T 0 | c 


