
 

 

COT 4210 Fall 2016 Sample Problems with Solutions  

 1. Let L be defined as the language accepted by the finite state automaton A: 

 
 a.) Fill in the following table, showing the l-closures for each of A’s states. 

 
State A B C D E 
l-closure { A } { B , C } { C } { D, E } { E } 

 b.) Convert A to an equivalent deterministic finite state automaton.  Use states like AC to denote the 
subset of states {A,C}.  Be careful -- l-closures are important. 
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2. Let L be defined as the language accepted by the finite state automaton A: 
 

 

  Using the technique of ripping (collapsing) states, replacing transition letters by regular 
expressions, develop the regular expression associated with A that generates L.  I have included 
the diagrams associated with removing states A, B, then C, in that order. 
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3. Let L be recognized by the DFA, A=( Q , S , δ , qo , F ), where |Q|=N.   

Use the Pumping Lemma to show that the following language,  
L = { an bm ct | n > m or n > t, and n, m, t ³ 0  }, is not regular. 
 
Proof by contradiction: 
 
Assume L is regular and let N be the number from the P.L. Clearly 
 
 aNbN-1cN-1 Î L 
 
By P.L., aNbN-1cN-1 ≡ uvw, where |uv| ≤ N and uw Î L, since we can pump as uv0w.  But then, if 
we compose the expression as the following: aN-|v| a|v| bN-1cN-1, when we remove |v| a’s, via 
pumping, and we end up with aN-|v|bN-1cN-1 belonging to L  Since, |v| > 0, the number of a’s is less 
than or equal to the number of b’s and c’s, which implies aN-|v|bN-1cN-1  Ï L, which is a 
contradiction of our assumption, and therefore L is not regular. 
 
 
 

 4. Analyze the following language, L, proving it non-regular by showing that there are an infinite 
number of equivalence classes formed by the relation RL defined by:  

  x RL y if and only if [ "z Î {a,b,c}*, xz Î L exactly when yz Î L ].   
where   L = { an bm ct | n > m > t }.  
You don’t have to present all equivalence classes, but you must demonstrate a pattern that gives 
rise to an infinite number of classes, along with evidence that these classes are distinct from one 
another. 
 
Clearly, aibi-1ci-2  Î L, ai+1bi-1ci-2 and also ai+1bici-1 Î L but aibici-1 Ï L, which implies, ai RL aj iff 
i = j.  Since both ai and aj are RL distinguishable when i ¹ j, then there are an infinite number of 
equivalence classes. Thus L is non-regular. 
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 4. Consider the regular grammar G: 
S ® 0 S  | 1 A 

A ® 0 S | 0 A | 1 B | l 

B ® 1 S | 0 B 
 a.) Present an automaton A that accepts the language generated by the G: 

 

 b) Regular grammars generate the class of regular languages.  Regular expressions denote the class of 
regular sets.  The equivalence of these is seen by a proof that every regular set is a regular 
language and vice versa.  The first part of this, that every regular set is a regular language, can be 
done by first showing that the basis regular sets (Ø , { l } , { a | a Î S }) are each generated by a 
regular grammar over the alphabet  ∑. 

 i.) Demonstrate a regular grammar for each of the basis regular sets. 

Ø  G = { {S},  S,  S, Ø }  

{ l } G = { {S},  S, S, {S → λ } } 

{ a } G = { {S}.  S, S, {S → a} } 

Let L1 be generated by the regular grammar G1 = ( N1 , S , S1 , P1 ) and L2 be generated by the 
regular grammar G2 = ( N2 , S , S2 , P2 ), where N1 Ç N2 = Ø. 

 ii.) Present a construction that produces a regular grammar for L1 • L2. 
 
G = { N1 È N2, S, S1, P } 
P = { X ® wS2 | " rules in P1 of the form X ® w, where X Î N1 and w Î S } È 
{ X ® wY | " rules in P1 of the form X®wY, where X, Y Î N1 and w Î S } È P2 

 

 Why is the property N1 Ç N2 = Ø needed here? 

 To prevent rules from the different grammars from mixing with one another when generating the 
new transition set. 

 iii.) What remains to be done to show that every regular set is a regular language?  Don’t do the 
proof, just state what needs to be done. 

Prove closure under union and Kleene*. 

 

S B A
: 

0 0 0 

1 

0 

1 

1 

A 



COT 4210 – 5 –  

 

 5. Present a Mealy Model finite state machine that reads an input x Î {0, 1}* and produces the binary 
number that represents the result of subtracting 10 from x (assumes all numbers are positive, 
including results).  Assume that x is read starting with its least significant digit. 
Examples: 0010 ® 0000; 1000 ® 0110; 0001 ® 1111 (wrong answer due to going negative) 

 

 

 

 

0/0, 1/1 

1/0 

0/1 

0/0, 
1/1 

-10 

-1 -0 


